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Introduction to Generalised Linear Models

Introduction and motivating examples

Introduction to GLMs

https://youtu.be/5u1w6eROypI
Duration: 9m57s

In this course we will extend the theory of linear regression models to non-normal responses. Before we begin withintroducing the class of models known as Generalised LinearModels (GLMs), wewill briefly illustrate why linear modelsare not sufficient for all types of data. Throughout the course, we will see how we can deal with a variety of situationswhere the linear model may not be adequate.
Themain objective of this week’s learningmaterial is to introduce Generalised LinearModels (GLMs), which extend thelinear model framework to outcome variables that don’t follow the normal distribution. GLMs can be used to modelnon-normal continuous outcome variables, but they are most frequently used to model binary, categorical or count
data. We will focus on these latter types of outcome variables. To see why extensions to the normal linear model areneeded, let’s look at a couple of examples, one where the normal linear model is appropriate and one where it’s not.

Example 1 (Bollywood box office revenue).

Possibly the simplest scenario of a predictive model is when we want to predict an outcome variablebased on a predictor which displays a linear relationship to the variable of interest. Consider the follow-ing dataset on Bollywood film revenues (sourced from http://www.bollymoviereviewz.com](http://www.bollymoviereviewz.com)) which contains data on 190 filmsmade during the period 2013-2017. Wewouldlike to predict the gross revenue of a film from the film’s budget. Both the gross revenue and the budgetare measured in crore. Here are the first few rows of the data:
bollywood <-

read.csv(url("http://www.stats.gla.ac.uk/~tereza/rp/bollywood_boxoffice.csv"))
head(bollywood)

Movie Gross Budget
Ek Villain 95.64 36.0Humshakals 55.65 77.0Holiday 110.01 90.0Fugly 11.16 16.0City Lights 5.19 9.5Kuku Mathur Ki Jhand Ho Gayi 2.23 4.5
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We can plot the gross revenue against the budget to explore the relationship between the two variables.
b.plot <- ggplot(data = bollywood, aes(y = Gross, x = Budget)) +

geom_point(col = "#66a61e") +
scale_x_continuous("Budget (crore)") + scale_y_continuous("Gross (crore)")
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Looking at the scale of the values on both the horizontal and vertical axes, we might want to transformthe data by taking logs.
b.plot.l <- ggplot(data = bollywood, aes(y = log10(Gross), x = log10(Budget))) +

geom_point(col = "#1b9e77") +
scale_x_continuous("log(Budget) (crore)") +
scale_y_continuous("log(Gross) (crore)")
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Now let’s fit a model with the log10 transformed gross revenue as the response (.8 ) and the log10 trans-formed budget (G8 ) as the explanatory/predictor variable. We can use the lm() function to fit this linearmodel in R.
bol.lm <- lm(log10(Gross) ~ log10(Budget), data = bollywood)

The model equation in mathematical notation is
� (.8) = `8 = V0 + V1G8; where the .8 are independent # (`8 , f2), 8 = 1, ..., 190

The model fit is shown below:
summary(bol.lm)

Call:
lm(formula = log10(Gross) ~ log10(Budget), data = bollywood)

Residuals:
Min 1Q Median 3Q Max

-1.45702 -0.24470 0.00807 0.24600 1.73413

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.62549 0.12338 -5.069 9.51e-07 ***
log10(Budget) 1.31955 0.07887 16.730 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3921 on 188 degrees of freedom
Multiple R-squared: 0.5982, Adjusted R-squared: 0.5961
F-statistic: 279.9 on 1 and 188 DF, p-value: < 2.2e-16

We can visualise this regression model by plotting the data and fitted regression line:
b.plot.lm <- ggplot(data = bollywood, aes(y = log10(Gross), x = log10(Budget))) +

geom_point(col ="#1b9e77") +
scale_x_continuous("log(Budget) (crore)") +
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scale_y_continuous("log(Gross) (crore)") +
geom_smooth(method = lm, colour="#e7298a", se=FALSE)

`geom_smooth()` using formula 'y ~ x'
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Task 1.
Using the fitted model equation, predict the gross revenue for a film with a budget of (i) 10, (ii) 50, and(iii) 100 crore.
Hint: Remember that the variables have been log-transformed.

Example 2 (GPA and admission to medical school).

Now let’s look at a different kind of dataset, where the outcome we want to predict is not continuous-valued but binary. This is a dataset on admissions to USmedical schools, which gives the admission status,GPA and standardised test scores for 55 medical school applicants from a liberal arts college in the USMidwest and it can be loaded from the Stat2Data package in R.
library(Stat2Data)
data(MedGPA)

The first few rows of the data are given below.
Accept Acceptance Sex BCPM GPA VR PS WS BS MCAT Apps
D 0 F 3.59 3.62 11 9 9 9 38 5A 1 M 3.75 3.84 12 13 8 12 45 3A 1 F 3.24 3.23 9 10 5 9 33 19A 1 F 3.74 3.69 12 11 7 10 40 5A 1 F 3.53 3.38 9 11 4 11 35 11A 1 M 3.59 3.72 10 9 7 10 36 5
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Let us look at a plot of acceptance against GPA, adding a bit of jitter to make overlapping points morevisible.
medgpa.plot <- ggplot(data = MedGPA, aes(y = Acceptance, x = GPA)) +

geom_jitter(width =0, height =0.01, alpha =0.5, colour ="#984ea3")

We can add the linear regression line for Acceptance as a function of GPA to the plot.
medgpa.plot + geom_smooth(method = "lm", se = FALSE,

fullrange = TRUE, colour = "#984ea3")

`geom_smooth()` using formula 'y ~ x'
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The R code for fitting the model and the model output is shown below.
med.lm <- lm(Acceptance ~ GPA, data=MedGPA)
summary(med.lm)

Call:
lm(formula = Acceptance ~ GPA, data = MedGPA)

Residuals:
Min 1Q Median 3Q Max

-0.7510 -0.3717 0.1352 0.3059 0.8464

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.8240 0.7226 -3.908 0.000266 ***
GPA 0.9483 0.2027 4.678 2.04e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4267 on 53 degrees of freedom
Multiple R-squared: 0.2922, Adjusted R-squared: 0.2788
F-statistic: 21.88 on 1 and 53 DF, p-value: 2.043e-05

In mathematical notation, the value of the independent response .8 is equal to 1 if the 8th applicant isaccepted and .8 = 0 otherwise, where G8 refers to to the 8th applicant’s college GPA for 8 = 1, . . . , 55. The
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normal linear model assumes that the .8 are independent # (`8 , f2) with `8 = V0 + V1G8 , with the fittedmodel equation given by ˆ̀8 = −2.8240 + 0.9483G8 .
One issue with this fit is that the predicted values of the response can take any real values, while ac-ceptance can only take the value 0 or 1. And it is hard to argue that a variable taking values of 0 or 1is normally distributed. Instead, we can use a logistic regression model for the probability of acceptance.Let’s first write it down in mathematical notation by letting ?8 = %(.8 = 1) denote the probability ofacceptance for the 8th applicant. We assume that the .8 are independent random variables which followthe Bin(1, ?8) (or Bernoulli(?8)) distribution with

log
(

?8

1 − ?8

)
= V0 + V1G8 .

This is equivalent to:

?8 =
exp(V0 + V1G8)

1 + exp(V0 + V1G8)
.

(Solve the first equation for ?8 to verify this!)
We can fit this model in R using the glm() function:
med.glm <- glm(Acceptance ~ GPA, data = MedGPA, family = binomial)

The argument family=binomial specifies that Acceptance follows a binomial distribution, with proba-bility of success ?8 (i.e. the probability of the 8th applicant being accepted is ?8 ). In addition, the probability
?8 is a function of G8 (i.e. the probability of the 8th applicant being accepted is a function of that applicant’s
GPA). The default link function, corresponding to the logit link log

(
?8

1 − ?8

)
, is used here. That is, family

= binomial implies family = binomial(link="logit").
The model fit is shown below.
summary(med.glm)

Call:
glm(formula = Acceptance ~ GPA, family = binomial, data = MedGPA)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.207 5.629 -3.412 0.000644 ***
GPA 5.454 1.579 3.454 0.000553 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom
Residual deviance: 56.839 on 53 degrees of freedom
AIC: 60.839

Number of Fisher Scoring iterations: 4

The regression equation for the fitted model is
log

(
?̂8

1 − ?̂8

)
= −19.207 + 5.454G8 ,

or equivalently
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?̂8 =
exp(−19.207 + 5.454G8)

1 + exp(−19.207 + 5.454G8)
.

The fitted curve for the probability of acceptance is shown in orange below.
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
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We can see that that this curve fits the data better than the linear regression line, and that it gives pre-dicted probabilities between 0 and 1, as desired. We could add predictors to the model to improve pre-dictive performance – we’ll see more about that later.
The regression equation we have obtained allows us to predict the acceptance probability for a givenGPA.

Task 2.
Predict the acceptance probability for an applicant with a GPA of (i) 2.5, (ii) 3 (iii) 4. First do this “by hand”using the regression equation, then in R using the predict() function.
Hint: The predict() function will return values on the linear predictor scale unless you specify
type='response' which returns probabilities instead.

https://goo.gl/mZHxyN
• Section 2.3 fromMixed effects models and extensions in ecology with R -Zuur et al. discusses the appropriatenessof the assumptions of the linear model.

What do the Bollywood box office and medical school admission examples have in common?
In both cases we have independent observations and we want to predict an outcome of interest (gross rev-enue/acceptance) based on an explanatory variable (budget/GPA). In both cases we have a regression equationallowing us to predict the response from a given value of the predictor. However, in one case the response is assumed
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to follow the normal distribution, in the other the binomial distribution. In both cases we fit a model to the mean ofthe response: in the normal linear model the mean � (.8) = `8 is assumed to be a linear function of G8 : `8 = V0 + V1G8 ,and in the logistic regression model the mean `8 = � (.8) = ?8 is modelled through the logit link function. That is, in
logistic regression log

(
?8

1 − ?8

)
= V0 + V1G8 . In slightly more general notation we have 6(`8) = xᵀ

8
# where `8 = � (.8)

and 6(`8) for each distribution is given in the following table.
Model Random component Systematic component Link function

Normal model H8
indep∼ # (`8 , f2), x)

8
# = V0 + V1G8 Identity link 6(`8) = `8

� (.8) = `8
Logistic regression H8

indep∼ �8=(1, ?8), x)
8
# = V0 + V1G8 Logit link: 6(`8) = log

(
`8

1−`8

)
= log

(
?8

1−?8

)
model � (.8) = ?8

Exponential family of distributions
It turns out that the normal and binomial distributions also have something else in common: they are both membersof the exponential family of distributions. (And so is the Poisson, the negative binomial, gamma distribution and manyothers.)

Definition 1 (Exponential family of distributions).

Consider a random variable . whose probability density function (p.d.f.) or probability mass function (p.m.f.)
depends on parameter \. The distribution belongs to the exponential family if it can be written as

5 (H; \) = exp [0(H)1(\) + 2(\) + 3 (H)] .

The term 1(\) is called the natural parameter. If 0(H) = H the distribution is said to be in canonical form.

Example 3 (Normal distribution is a member of exponential family).

Consider . ∼ # (\, f2) with p.d.f.
5 (H; \) = 1

√
2cf2

exp
[
− 1

2f2 (H − \)
2
]
, −∞ < H < ∞. (1)

If we are interested in estimating \, the variance, f2, can be regarded as a nuisance parameter. By rewrit-ing the p.d.f. as
5 (H; \) = exp

[
− H2

2f2 +
H\

f2 −
\2

2f2 −
1
2 log(2cf2)

]
(2)

we can see that this is of exponential family form with 0(H) = H (hence in canonical form) and naturalparameter 1(\) = \/f2.

Task 3.
Show that the binomial distribution Bin(=, ?) is a member of the exponential family.

The exponential family of distributions has several interesting and useful properties. It can be shown that the expec-tation and variance for members of the exponential family can be expressed as
� [0(. )] = − 2

′(\)
1′(\)

and
Var[0(. )] = 1′′(\)2′(\) − 2′′(\)1′(\)

[1′(\)]3 .
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Some further useful properties of exponential family distributions relate to the score function.

Definition 2 (Score statistic).

* =
3; (\; H)
3\

is called the score statistic, and is equal to the derivative of the log-likelihood ; (\; H) with respect
to the parameter \.

For exponential family distributions with log-likelihood ; (\; H) = 0(H)1(\) + 2(\) + 3 (H), the score is
* (\; H) = 3; (\; H)

3\
= 0(H)1′(\) + 2′(\) (3)

We use the score (derivative of the log-likelihood) to solve the likelihood equation* =
3; (\; H)
3\

= 0 in order to obtain
the maximum likelihood estimate \̂ for a number of distributions.
We can think of the score statistic,* = 0(. )1′(\) + 2′(\), as a random variable in its own right, which means we cancalculate its expectation

E(*) = 1′(\)� [0(. )] + 2′(\) = 1′(\)
[
− 2
′(\)
1′(\)

]
+ 2′(\) = 0,

and its variance
Var(*) = [1′(\)2]Var[0(. )] .

This leads us to a very important concept in statistical inference, called Fisher information, which we can use to obtainstandard errors for maximum likelihood estimates of GLM coefficients.

Definition 3 (Fisher’s information).

The Fisher Information, denoted as I, is given by:

I = Var(*) = � (*2) = �
[(
3; (\; H)
3\

)2
]
= �

[
32; (\; H)
3\2

]
. (4)

The variance of the maximum likelihood estimates tells us about the amount of information that an observed randomvariable carries about an unknown parameter in the model that is linked to a distribution.
As we will see shortly, the score and information play a key role in parameter estimation and in obtaining standarderrors for the coefficient estimates of a GLM.
Having defined the exponential family of distributions, we are now ready to formally define a GLM.

https://goo.gl/mZHxyN
• Chapter 8 from Mixed effects models and extensions in ecology with R -Zuur et al. contains a more in-depthdiscussion of the exponential family.

Generalised Linear Models

Definition 4 (Generalised Linear Models).

Let .8 be independent responses from an exponential family distribution in canonical form and `8 = � (.8),
8 = 1, . . . , =. A generalised linear model (GLM) is a model of the form 6(`8) = xᵀ

8
#where # is a ?-dimensional

parameter vector, xᵀ
8
is the 8th row of the design matrix ^, and 6() is a monotonic, differentiable function called

the link function.
A GLM generalises the normal linear model by allowing:

1. a response variablewith a distribution other than normal, but amember of the exponential family of distributions;and
10
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2. a relationship between the response and the linear component of the form 6(`8) = xᵀ
8
# where 6() is the link

function.
Components of a generalised linear model

1. The random component: Suppose.1, . . . , .= are independent random variables which follow an exponential fam-ily distribution such that 5 (H8; \8) = exp[H81(\8) + 2(\8) + 3 (H8)] for 8 = 1, . . . =. The joint p.d.f. (or p.m.f.) of the
.8 is

5 (H1, . . . , .=; \1, . . . , \=) =
=∏
8=1

exp[H81(\8) + 2(\8) + 3 (H8)]

= exp
[

=∑
8=1

H81(\8) +
=∑
8=1

2(\8) +
=∑
8=1

3 (H8)
]

(5)
The distribution of each .8 is in canonical form and depends on a single parameter \8 .

2. The systematic component: Associated with each H8 is a vector x8 = (G81, G82, . . . , G8 ?)ᵀ of values of ? explanatoryvariables. The response, .8 , depends on the explanatory variables through a linear component, [8 = xᵀ
8
# =

V1G81 + · · · + V?G8 ? for 8 = 1, . . . , = where xᵀ
8
is the 8th row of the design matrix ^ and # = (V1, . . . , V?)ᵀ is theparameter vector. As in linear models, the design matrix is given by

^ =


xᵀ1
...

xᵀ=

 =


G11 . . . G1?
...

...

G=1 . . . G=?

 .
3. The link function: The parameters \8 in equation (5) are usually not of direct interest. Instead, we are interestedin a smaller set of parameters (V1, . . . , V?), and assume that .8 depends on these through the linear predictor
[8 . The link between the distribution of the .8 and the linear predictor [8 is provided by the link function 6(),for which 6(`8) = [8 = xᵀ

8
#. Here `8 = � (.8) and 6() is a monotone, differentiable function. Although anyone-to-one function could be used in principle, certain choices of link function can offer great simplification.In particular, the link function can be chosen so that the natural parameter, 1(\8), is proportional to the linearcomponent [8 = xᵀ

8
#. Such a link function is known as the canonical link. The following table shows the canonicallink function for some of the most common distributions.

Distribution Natural parameter Canonical link

Normal \

f2 6(`) = `
Poisson log \ 6(`) = log(`)

Binomial log
(
\

1 − \

)
6(`) = log

(
`

1 − `

)

http://encore.lib.gla.ac.uk/iii/encore/record/C__Rb2939999?lang=eng
• Chapter 6 from Extending linear models with R: generalized linear, mixed effects and nonparametric regression

models - Faraway gives an overview of GLMs and their properties.

https://goo.gl/mZHxyN
• Sections 9.1 and 9.2 from Mixed effects models and extensions in ecology with R -Zuur et al. cover the generalformulation of GLMs.

Let us now look at some examples of generalised linear models and their components.

Example 4 (Normal linear model).
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Consider � (.8) = `8 = xᵀ
8
# where the .8 are independent # (`8 , f2) for 8 = 1, . . . , =. Here 6(`8) = `8 ,

the identity link. You may be more familiar with this model written as y = ^# + & where & =


n1
...

n=

 withthe n8 independent, identically distributed # (0, f2) random variables.

Example 5 (A model for historical linguistics).

If two languages are separated by time C, the probability of having cognate words for a particular meaningcan be modelled as exp(−\C). For a test list of = meanings, a linguist judges whether the correspondingwords in two languages are cognate or not. For the 8th meaning, define
.8 = {

1 if the two languages have cognate words
0 if words are not cognate.

Then %(.8 = 1) = exp(−\C) = ? and %(.8 = 0) = 1 − ? i.e. .8 ∼ Bernoulli(?) (or equivalently Bin(1, ?))and � (.8) = ?. The link function is 6(?) = log ? = −\C so that 6(?) is linear in the parameter of interest,
\; also x8 = −C; and # = \.

Example 6 (A model for mortality rates).

The number of deaths, . , in a population can be modelled by the Poisson distribution 5 (H; `) = `H4−`

H!where H = 0, 1, 2, . . . The expected number of deaths per year is � (. ) = ` and it can be modelled by
� (. ) = ` = =_(xᵀ#) where = is the population size and _(xᵀ#) is the death rate per 100,000 peopleper year. Let .1, . . . , .= be the numbers of deaths occurring in successive age groups. A possible modelis � (.8) = `8 = =8 exp(\8) where .8 ∼ Poisson(`8) and

• 8 = 1 for the age group 30-34,• 8 = 2 for age group 35-39,
• ...• 8 = 8 for age group 65-69.

This can be expressed as a generalised linear model as 6(`8) = log `8 = log =8 + \8 where xᵀ
8
= (log =8 , 8);and # = (1, \)ᵀ . The term log =8 is called the offset, and we will see more about it when we talk aboutmodels for counts.

Task 4.
Formulate the model used in the medical school admissions example as a GLM.

Maximum likelihood estimation of GLM coefficients
In a generalised linear model we are interested in the parameters V1, . . . , V? that describe how the response dependson the explanatory variables. We use the observed H1, . . . , H= to maximise the log-likelihood function

; (#, y) =
=∑
8=1

H81(\8) +
=∑
8=1

2(\8) +
=∑
8=1

3 (H8) (6)
obtained from equation (5). This depends on # through

`8 = � (.8) = −
2′(\8)
1′(\8)

;

Var(.8) = [1′′(\8)2′(\8) − 2′′(\8)1′(\8)]/[1′(\8)]3;
6(`8) = [8 = xᵀ

8
#, 8 = 1, . . . , =.
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The maximisation procedure results in ? simultaneous equations for #̂, which are usually solved numerically usingthe method of scoring (also known as Fisher’s scoring method) and an algorithm called iteratively reweighted least
squares.

Supplementary material:

Here we present in some detail how the maximum likelihood estimates of the coefficients of a GLM are obtained.Suppose that we are interested in estimating the parameter vector (V1, . . . , V?)ᵀ in a GLM. To find the maximum
likelihood estimates V̂ 9 we need the scores (multivariate version of the score fromDefinition 2) expressed as functionsof the V 9 :

* 9 =
m;

mV 9
=

=∑
8=1

[
m;8

mV 9

]
=

=∑
8=1

[
m;8

m\8
· m\8
m`8
· m`8
mV 9

]
(7)

For an exponential family distribution in canonical form, the components of (7) are:
m;8

m\8
= H81

′(\) + 2′(\) = 1′(\)
[
H8 −

(
− 2
′(\)
1′(\)

)]
= 1′(\) (H8 − `8) (8)

m`8

m\8
= − 2

′′(\8)
1′(\8)

+ 2
′(\8)1′′(\8)
[1′(\8)]2

= 1′(\8)Var(.8)

⇒ m\8

m`8
=

1
1′(\8)Var(.8)

(9)
m`8

mV 9
=
m`8

m[8
· m[8
mV 9

=
m`8

m[8
G8 9 =

G8 9

6′(`8)
(10)

Substituting (8), (9) and (10) into (7) the expression for the scores becomes
* 9 =

=∑
8=1

[
(H8 − `8)
Var(.8)

G8 9
m`8

m[8

]
=

=∑
8=1

[
(H8 − `8)
Var(.8)

G8 9

6′(`8)

]
. (11)

Note that the scores depend on # through `8 = � (.8) and through Var(.8). The variance-covariance matrix of the
* 9 has terms I9: = � (* 9*: ) and is known as the (Fisher) information matrix. This is the multivariate version ofDefinition 3. The elements of matrix I can be obtained from (11):

I9: = �

{
=∑
8=1

[
(H8 − `8)
Var(.8)

G8 9
m`8

m[8

] =∑
;=1

[
(H; − `;)
Var(.;)

G;:
m`;

m[;

]}
=

=∑
8=1

� [(.8 − `8)2]G8 9G8:
[Var(.8)]2

(
m`8

m[8

)2

=

=∑
8=1

G8 9G8:

Var(.8)

(
m`8

m[8

)2
=

=∑
8=1

G8 9G8:

Var(.8) (6′(`8))2
(12)

Here we have used the fact that � [(.8 − `8) (.; − `;)] = 0 by the independence of the.8 . Notice that the informationmatrix can be written as
I = I(#) = ^ᵀ]^ (13)

where ^ =


x
ᵀ
1
. . .

x
ᵀ
=

 =


G11 . . . G1?
.
.
.

. . .
.
.
.

G=1 . . . G=?

 ,] = diag(w) =

F1 0 . . . 0

0 F2
.
.
.

.

.

.
. . . 0

0 . . . 0 F=


, and

F8 =
1

Var(.8) (6′(`8))2
, 8 = 1, . . . , =. (14)

The information matrix I(#) depends on # through - and through Var(.8) for 8 = 1, . . . , =.
Equation (11) can be written as

* 9 =

=∑
8=1
(H8 − `8)G8 9F86

′(`8) =
=∑
8=1

G8 9F8I8 9 = 1, . . . , ? (15)
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where I8 = (H8 − `8)6′(`8), so the score can be expressed in vector-matrix form as
[()) = ^ᵀ]z. (16)

Fisher’s method of scoring is based on the estimating equation
#̂
(<)

= #̂
(<−1) + [I (<−1) ]−1[ (<−1) (17)

where #̂ (<) is the vector of estimates of (V1, . . . V?) at the<th iteration, [I (<−1) ]−1 is the inverse of the information
matrix with elements I9: given by (12), and[ (<−1) is the vector of elements given by (11), all evaluated at #̂ (<−1) .Substituting (13) and (16) in (17) we obtain

#̂
(<)

= #̂
(<−1) +

[
^ᵀ] (<−1)^

]−1
^ᵀ] (<−1) z (<−1)

=

[
^ᵀ] (<−1)^

]−1
^ᵀ] (<−1)^#̂

(<−1) +
[
^ᵀ] (<−1)^

]−1
^ᵀ] (<−1) z (<−1)

=

[
^ᵀ] (<−1)^

]−1
^ᵀ] (<−1) (( (<−1) + z (<−1) ) (18)

This is the same form as the normal equations for weighted least squares, except that it has to be solved numericallybecause (, z and] depend on #̂.
This is why the method to obtain maximum likelihood estimators for GLMs is called iteratively (re)weighted least
squares (IRWLS). The procedure begins by using an initial approximation #̂

(0) to obtain estimates of (, z and ].
Then #̂

(1) is obtained from (18) and is used to update (, z and]. The iterative process continues until the difference
between successive approximations #̂ (<−1) and #̂

(<) is sufficiently small.

Inference for GLMs
We will now turn our attention to inference for GLMs, mainly through hypothesis tests and the construction of confi-dence intervals for the parameters of interest. For that we need some sampling distribution results.
Sampling distribution of the MLE

The asymptotic (large sample) distribution for #̂ is
( #̂ − #)ᵀI( #̂) ( #̂ − #) approx∼ j2 (?) (19)

or equivalently
#̂

approx∼ #? (#,I−1), (20)
where j2 (?) refers to the chi-squared distribution with ? degrees of freedom and #? (#,I−1) refers to a multivariate(?-dimensional) normal distribution with vector mean # and ? × ?-dimensional variance-covariance matrix I−1.
In the one-dimensional case, what this says is that the MLE V̂ is approximately normally distributed with mean V andvariance I−1.
This allows us to perform hypothesis tests and construct confidence intervals for the model parameterss.

Definition 5 (Wald statistic).

TheWald statistic, also known as the z-statistic, for each of themodel parameters {
V 9

}
, 9 = 1, . . . , ?, is equal

to the coefficient estimate, V̂ 9 , over its standard error, se( V̂ 9 ).

Under the null hypothesis �0 : V 9 = 0, and using the asymptotic normality result for the MLE, the Wald statistic isapproximately distributed as standard normal. In other words, we have that
I =

V̂ 9

se( V̂ 9 )
approx∼ # (0, 1)

This allows us to perform the Wald test, which compares the z-statistic to the upper percentile of a standard normaldistribution.
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Also using this asymptotic normality result, we can construct an approximate 95% confidence interval for V 9 by taking
V̂ 9 ± 1.96se( V̂ 9 ).

Here 1.96 is the 97.5th percentile of the standard normal distribution.

Example 7 (Hypothesis test and confidence interval for the GPA coefficient in the model for medical school
admissions).

Recall the logistic regressionmodel for themedical school admissions data. In the output we see theMLEsof V0 and V1 in the Estimate column. These are obtained by solving the likelihood equations numeri-cally using Fisher’s scoring method (notice the Number of Fisher Scoring iterations informationtowards the end.)
summary(med.glm)

Call:
glm(formula = Acceptance ~ GPA, family = binomial, data = MedGPA)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.207 5.629 -3.412 0.000644 ***
GPA 5.454 1.579 3.454 0.000553 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom
Residual deviance: 56.839 on 53 degrees of freedom
AIC: 60.839

Number of Fisher Scoring iterations: 4

We can also see the standard errors for V̂0 (Intercept) and V̂1 (GPA coefficient). These are obtainedfrom the observed information matrix, which is computed during the iterative estimation procedure. Re-member that the variance of # is estimated by I−1, the inverse of the information matrix. The function
vcov()returns this estimated variance-covariance matrix of the model coefficients:
vcov(med.glm)

(Intercept) GPA
(Intercept) 31.682551 -8.873862
GPA -8.873862 2.493774

The diagonal entries of this matrix are the estimated variances for V̂0 and V̂1 and the off-diagonal entriesgive the estimated covariance between V̂0 and V̂1. The standard errors shown in the output (Std. Errorcolumn) are the square roots of the estimated variances:
sqrt(diag(vcov(med.glm)))

(Intercept) GPA
5.628726 1.579169

The z value column gives the Wald statistics that test the hypotheses �0 : V0 = 0 and �0 : V1 = 0.Usually we are not as interested in testing whether the intercept term is zero or not and we focus insteadon the coefficients of the explanatory variables in the model. So for �0 : V1 = 0 the I value equals 3.454
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and is obtained by taking the coefficient estimate and dividing by its standard error
I =

V̂1

se( V̂1)
=

5.454
1.579 = 3.454.

Under �0, I should approximately follow the standard normal distribution, # (0, 1). The ?-value shown as
Pr(>|z|) in the output is the probability of obtaining a value as extreme as I or larger in absolute value,assuming the null hypothesis is true. A small ?-value indicates that the I value is unlikely to come from a
# (0, 1) distribution and leads to rejecting �0. As the ?-value for the GPA coefficient is small (0.000553)we can therefore conclude that the GPA coefficient differs significantly from zero, ie. that the GPA termis worth keeping in the model.
To obtain an approximate 95% confidence interval for the GPA coefficient, we take V̂ 9 ± 1.96se( V̂ 9 ):
5.454-1.96*1.579

[1] 2.35916

5.454+1.96*1.579

[1] 8.54884

The resulting interval is (2.36, 8.55), and since it does not include zero, we conclude that the GPA coeffi-cient is significant.

Deviance

To assess the adequacy of amodel of interest, we compare it with the saturated (or full) model, which has themaximumnumber of parameters that can be estimated. For data with = observations, H1, . . . , H=, each with a different parameterin ^ᵀ#, the saturated model can be specified with = parameters. If we have replicates, the maximum number ofparameters in the saturated model can be less than =. Let < be the maximum number of parameters that can beestimated, and #max and #̂max be the corresponding parameter vector and MLE.
Let ! ( #̂max; y) be the likelihood evaluated at #̂max, that is the likelihood for the full model. Let ! ( #̂; y) be themaximumvalue of the likelihood for a model of interest. The likelihood ratio

_ =
! ( #̂max; y)
! ( #̂; y)

provides a measure of how well the model of interest fits compared with the full model. In practice, we often use thelogarithm of the likelihood ratio: log _ = ; ( #̂max; y) − ; ( #̂; y). Large values of log _ suggest that the model of interestis a poor description of the data relative to the full model. How large a value of log _? To answer this question weneed to obtain a critical region using the sampling distribution of log _. In fact, we will work with the quantity 2 log _,which is called the deviance.

Definition 6 (Deviance). The deviance, �, is defined as � = 2 log _ = 2[; ( #̂max; y) − ; ( #̂; y)] where
; ( #̂max; y) is the maximised log-likelihood for the saturated model and ; ( #̂; y) is the maximised log-likelihood
for the model of interest.

For a GLM that fits the data well, the approximate distribution of the deviance, �, is j2 (<− ?) where< is the numberof parameters in the saturated model and ? is the number of parameters in the model of interest.

Example 8 (Deviance for a binomial model).

Suppose .1, . . . , .= are independent with .8 ∼ �8=(=8 , ?8) for 8 = 1, . . . , =. The log-likelihood is
; (#; y) =

=∑
8=1

[
H8 log ?8 − H8 log(1 − ?8) + =8 log(1 − ?8) + log

(
=8

H8

)]
(21)

For the full model the ?8 ’s are all different, so # = (?1, . . . , ?=)ᵀ and we can show that ?̂8 = H8/=8 . This
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gives
; ( #̂max; y) =

∑ [
H8 log

(
H8

=8

)
− H8 log

(
=8 − H8
=8

)
+ =8 log

(
=8 − H8
=8

)
+ log

(
=8

H8

)]
. (22)

For any model with ? < = parameters, the MLE of ?8 is ?̂8 and the fitted values are Ĥ8 = =8 ?̂8 . This gives
; ( #̂; y) =

=∑
8=1

[
H8 log

(
Ĥ8

=8

)
− H8 log

(
=8 − Ĥ8
=8

)
+ =8 log

(
=8 − Ĥ8
=8

)
+ log

(
=8

H8

)]
. (23)

Thus, the deviance is
� = 2[; ( #̂max; y) − ; ( #̂; y)] = 2

=∑
8=1

[
H8 log

(
H8

Ĥ8

)
+ (=8 − H8) log

(
=8 − H8
=8 − Ĥ8

)]
. (24)

Example 9 (Deviance for a normal linear model).

Suppose .1, . . . , .= are independent with .8 ∼ # (`8 , f2) and � (.8) = `8 = ^ᵀ
8
# for 8 = 1, . . . , = . Thelog-likelihood function is

; (#; y) = − 1
2f2

=∑
8=1
(H8 − `8)2 −

1
2= log(2cf2). (25)

For the saturated model, we have = parameters `1, . . . , `=. The MLEs are ˆ̀8 = H8 and so the maximumvalue of the log-likelihood becomes
; ( #̂max; y) = −1

2= log(2cf2). (26)
For any other model with ? < = parameters, the MLE of # is #̂ = (^ᵀ^)−1^ᵀy. The correspondingmaximised log-likelihood function is

; ( #̂; y) = − 1
2f2

=∑
8=1
(H8 − xᵀ8 #̂)

2 − 1
2= log(2cf2). (27)

The deviance then is
� = 2[; ( #̂max; y) − ; ( #̂; y)] = 1

f2

=∑
8=1

(
H8 − xᵀ8 #̂

)2
=

1
f2

=∑
8=1
(H8 − ˆ̀8)2 . (28)

It turns out that the (exact) distribution of� is j2 (=−?). If themodel fits the datawell, then� ∼ j2 (=−?),and the expected value of � will be =− ?, since the expectation of a chi-squared random variable is equalto its degrees of freedom.
However, we are not able to use this chi-squared distribution directly, because the expression for thedeviance contains the nuisance parameter f2. As youmay remember from your linear regression courses,we end up using F tests instead.

Example 10 (Deviance for a Poisson model).

Let .1, . . . , .= be independent random variables with .8 ∼ %>(`8). Then the log-likelihood function is
; (#; y) =

∑
H8 log `8 −

∑
`8 −

∑
log(H8!). (29)

For the full model #max = (`1, . . . , `=)ᵀ , ˆ̀8 = H8 , and the maximum value of the log-likelihood is
; ( #̂max; y) =

∑
H8 log H8 −

∑
H8 −

∑
log(H8!). (30)
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Suppose that for the model of interest with ? < = parameters the MLE, #̂, can be used to obtain ˆ̀8 andhence fitted values Ĥ8 = ˆ̀8 (because � (.8) = `8 ). For the model of interest the maximum value of thelog-likelihood is
; ( #̂; y) =

∑
H8 log Ĥ8 −

∑
Ĥ8 −

∑
log(H8!). (31)

Hence, the deviance is
� = 2[; ( #̂max; y) − ; ( #̂; y)] = 2

[∑
H8 log

(
H8

Ĥ8

)
−

∑
(H8 − Ĥ8)

]
(32)

For most models ∑
H8 =

∑
Ĥ8 , so the deviance can be written as

� = 2
∑

H8 log
(
H8

Ĥ8

)
= 2

∑
>8 log

(
>8

48

)
, (33)

where >8 denotes the observed value and 48 the expected value of H8 . The deviance can be computedfrom the data and compared with the j2 (= − ?) distribution.
Consider the data below for which the .8 are assumed to be independent observations from a Poissondistribution.

H8 2 3 6 7 8 9 10 12 15
G8 -1 -1 0 0 0 0 1 1 1

We fit a model of the form `8 = V1 + V2G8 . The fitted values are Ĥ8 = V̂1 + V̂2G8 where V̂1 = 7.45163 and
V̂2 = 4.93530. The deviance is 1.8947, which is small compared with = − ? = 7, indicating no lack of fit.

Task 5.
Verify the value 1.8947 for the deviance given in the above example.

Hypothesis testing using the deviance

Aswe’ve already seen, we can test hypotheses about the ?-dimensional parameter vector # by using theWald statisticand the asymptotic distribution of the MLE.
Alternatively we can compare nested models "0 and "1 using the difference of their deviances.
Consider �0 : # = #0 = (V1, . . . , V@)ᵀ corresponding to "0 and �1 : # = #1 = (V1, . . . , V?)ᵀ corresponding to "1with @ < ? < =. Test �0 against �1 by considering

�0 − �1 = 2[; ( #̂max; y) − ; ( #̂0; y)] − 2[; ( #̂max; y) − ; ( #̂1; y)]
= 2[; ( #̂1; y) − ; ( #̂0; y)]

If both models describe the data well then �0 ∼ j2 (=− @), �1 ∼ j2 (=− ?) and �0 −�1 ∼ j2 (? − @). If "1 describesthe data well but "0 does not, then �0 − �1 will be larger than expected for a value from j2 (? − @). So, reject �0 if
�0 − �1 > j2 (1 − U; ? − @) that is, if the difference in deviances exceeds the upper 100 × U% point of the j2 (? − @)distribution.

Example 11 (Hypothesis test for the GPA coefficient in the model for medical school admissions, this time using
deviances).

Suppose that we want to test �0 : V1 = 0 in the medical school admissions example. We can performthis test using the deviances given in the output.
Call:
glm(formula = Acceptance ~ GPA, family = binomial, data = MedGPA)

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.207 5.629 -3.412 0.000644 ***
GPA 5.454 1.579 3.454 0.000553 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom
Residual deviance: 56.839 on 53 degrees of freedom
AIC: 60.839

Number of Fisher Scoring iterations: 4

Here �0 is the null deviance, that is the deviance in the model that includes only the intercept (and noother predictors). �1 is the residual deviance, that is the deviance of the model of interest (the modelwith GPA included as a predictor). Under �0 �0 − �1 should be approximately distributed as j2 (1). The95th percentile of the j2 (1) distribution is j2 (0.95; 1) = 3.84, and as �0 − �1 = 75.791 − 56.839 =

18.952 > 3.84 we can reject the null hypothesis. Again we conclude that GPA is a significant term in themodel.

Week 2 learning outcomes
• Know the scope of generalised linear models (GLMs): what do they have in common with the normal linearmodel and in which ways do they generalise it?
• Be familiar with the properties of the exponential family of distributions and how they relate to GLMs; recognisecommon distributions that are members of this family.
• Have a basic understanding of how coefficient estimates and standard errors are obtained in a GLM; be familiarwith the concepts of likelihood, maximum likelihood estimation, testing, confidence intervals, and goodness offit statistics in the context of GLMs.
• Be familiar with the main ways of doing inference on the parameters of a GLM – these are based on large sampledistribution results for the maximum likelihood estimator and the deviance. Be able to test the significance of aterm in a GLM by performing a Wald test or by comparing deviances between nested models.
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Answers to tasks
Answer to Task 1. For the Bollywood box office revenue example, we can write down the fitted model equation fromthe summary(bol.lm):

log 10(Gross) = −0.62549 + 1.31955 × log 10(Budget)
We can use this equation to predict the gross revenue of a film by simply substituting the relevant budget value, andtransforming the result from the log10 scale. Thus:

(i) budget = 10:
log 10(Gross) = −0.62549 + 1.31955 × log 10(10) = 0.69406⇒ Gross = 100.69406 = 4.94379

(ii) budget = 50:
log 10(Gross) = −0.62549 + 1.31955 × log 10(50) = 1.616386⇒ Gross = 101.616386 = 41.34148

(iii) budget = 100:
log 10(Gross) = −0.62549 + 1.31955 × log 10(100) = 2.01361⇒ Gross = 102.01361 = 103.1834

Answer to Task 2. In the GPA and admission to medical school example, we can write down the fitted model equationfrom the summary(med.glm):
log

(
?8

1 − ?8

)
= −19.207 + 5.454 × GPA

From the fitted equation, we can obtain the acceptance probability by solving for ?8 :

?̂8 =
exp(−19.207 + 5.454 × GPA)

1 + exp(−19.207 + 5.454 × GPA)
To predict the acceptance probability for an applicant we just need to substitute the specified GPA in the equation for
?̂8 :

(i) GPA = 2.5:
?̂8 =

exp(−19.207 + 5.454 × 2.5)
1 + exp(−19.207 + 5.454 × 2.5) ⇒ ?̂8 = 0.00378

(ii) GPA = 3:
?̂8 =

exp(−19.207 + 5.454 × 3)
1 + exp(−19.207 + 5.454 × 3) ⇒ ?̂8 = 0.05494

(iii) GPA = 4:
?̂8 =

exp(−19.207 + 5.454 × 4)
1 + exp(−19.207 + 5.454 × 4) ⇒ ?̂8 = 0.93143

Alternatively, we can use the predict() function in R as follows:
predict(med.glm, data.frame(GPA = c(2.5, 3, 4)), type = 'response')

1 2 3
0.003791903 0.054992029 0.931512655

Answer to Task 3. Consider . ∼ Bin(=, \) with p.m.f.
5 (H; \) =

(
=

H

)
\H (1 − \)=−Hfor H = 0, 1, . . . , =. (34)

By rewriting the p.m.f. as
5 (H; \) = exp

[
H log \ − H log(1 − \) + = log(1 − \) + log

(
=

H

)]
(35)

= exp
[
H log \

1 − \ + = log(1 − \) + log
(
=

H

)]
(36)
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we see that this is a member of the exponential family in canonical form, and its natural parameter is given by: 1(\) =
log

(
\

1 − \

)
.

Answer to Task 4. Random component: Let .8 = 1 if the 8th applicant is accepted to medical school and .8 = 0 if not.We assume that the .8 are independent responses from Bin(1, ?8), with � (.8) = ?8 for i=1,. . . ,55.
Systematic component: V0 + V1G8 where G8 is the 8th applicant’s GPA and V0 and V1 are parameters to be estimated.
Link function: 6(?8) = log

(
?8

1 − ?8

)
(logit link)

Equation of the GLM:
log

(
?8

1 − ?8

)
= V0 + V1G8 .

Answer to Task 5. We need to get the fitted values Ĥ8 for 8 = 1, . . . , 9 and then substitute into the expression for thedeviance.
H8 2 3 6 7 8 9 10 12 15
Ĥ8 2.51633 2.51633 7.45163 7.45163 7.45163 7.45163 12.38693 12.38693 12.38693

H8 log
(
H8
Ĥ8

) -0.45931 0.52743 -1.30004 -0.43766 0.56807 1.69913 -2.14057 -0.38082 2.87115
So ∑9

8=1 H8 log
(
H8
Ĥ8

)
= 0.94738 and � = 2

∑9
8=1 H8 log

(
H8
Ĥ8

)
= 1.89476.
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