University

nt
of Glasgow

DATA ANALYTICS jliy

GLASGO

Data Mining and Machine
Learning Il

Charis Chanialidis & Nema Dean
Lightly edited by Andrew Elliott

Academic Year 2021-22

Week 1:

Network Analysis Part |

Statistical Network Analysis
A totally different kind of statistics!

The modern world, more than ever before, is about making connections. Buzz words like “networking” are common-
place in most workplaces. The “six degrees of separation” theory states that everyone and everything is six or fewer
steps away, by way of introduction, from any other person in the world. The name for this theory is often used as a
synonym for the “small world” phenomenon. For those of you old enough to remember the actor Kevin Bacon, there’s
even a game version of this called “Six degrees of Kevin Bacon”, where people try to link any named actor to Kevin
Bacon using no more than six connections. Obvious examples of online social media that exploit or allow interper-
sonal connections include Facebook and LinkedIn. In 2011, Facebook published a report that said the average distance
between pairs of users was 4.74 with 99.91% of users connected.

The idea of connections and networks are important where one is interested in studying the connectivity of sets of
people, organisations or any kind of object. Often when the number of items being studied is small, one can easily
draw a picture of a graph representing the connections and do an analysis by eye. But if the number of objects is large
or there are other pieces of information that we wish to explore related to the objects or connections, we need to use
network analysis. Network analysis is a fairly recent area of research in statistics, combining ideas from graph theory
in mathematics, computer science and research from other fields like anthropology, sociology and psychology. The
beginnings of social network analysis is usually credited to Jacob Moreno in the 1930s. As a relatively young field,
there are still lots of active researchers in the area as well as dedicated journals, like Social Networks.

Network analysis, often referred to as statistical network analysis or social network analysis, is a set of methods that
help explore and analyse network data, be those networks of people, networks of countries, networks of genes or any
other kind. The main goals are

e visualization
e summarizing network and network-related variable attributes
e statistical modelling of networks

We will explore aspects of each of these in this handout but obviously with an extremely wide variety of options, we
cannot cover everything or always go into the detail we would like. This handout is based on personal notes, as well
as material from the internet and textbooks. A good set of textbooks to get started with network analysis are given in
the following supplementary material.

Introduction to Social Network Analysis
https:/youtu.be/TnHS62UgDVg
Duration: 3m09s

What is Social Network Analysis?

Sixssow

Good starter textbooks:

e Statistical Analysis of Network Data by Eric D. Kolaczyk (Springer), and its companion volume
e Statistical Analysis of Network Data with R by Eric D. Kolaczyk and Gabor Csardi (Springer)

e A User's Guide to Network Analysis in R by Douglas A. Luke (Springer)

e Networks: An Introduction by Mark Newman (Oxford University Press)

There are also numerous online resources including Robert A. Hanneman and Mark Riddle’s online introduction to
social network methods at http:/www.faculty.ucr.edu/~hanneman/nettext/.

We choose to use the R statistical software language to implement the topics introduced in the course because of the
flexibility of the language, the excellent visualizations possible and the host of methods for which there are already
implemented in R packages. However, R is not the only option available, nor is it always going to be the best one.
Other stand-alone possibilities include Pajek or Gelphi as well as various high level programming languages e.g. Matlab,
Python, Julia etc. For readers who use Python as their main language and wish to use these methods more widely,

https://youtu.be/TnHS62UgDVg
http://www.faculty.ucr.edu/~hanneman/nettext

(a) Friendship (b) No friendship

Figure 1: Two possibilities for (undirected) friendship

there are some excellent Python libraries for Network Analysis for example Networkx; iGraph or Graphtool.

The remainder of this handout will be divided as follows. The next section will introduce the terminology and notation
used in this area and the Managing Data section will explain how to read in and import network data and change be-
tween different data formats in the R packages as needed. In terms of actually analyzing data, the Visualizing Network
Data section will start off by discussing how to create meaningful plots of the graphs underlying the network data,
the Network Summary Statistics section will introduce network characteristics of importance and how to calculate
and interpret the statistics that measure these and the Network Models section will introduce the exponential random
graph model as well as a couple of other popular models. The Stochastic Block Models section discusses a network
clustering model known as the stochastic block model. Finally we conclude with a discussion which reviews some of
the methods not covered and gives advice on finding out more about this subject.

Terminology, Notation and Simple Summaries
Terminology

The foundation of network analysis is the graph. Graphs are made up of two sets: a set of nodes/actors/vertices
and a set of connections/links/ties/edges between those nodes. In mathematical terms we’'d say that a graph G is
a structure consisting of a set V of vertices and a set E of edges, with E being made up of pairs {u, v} of distinct
vertices u, v € V that define the edges. Note that this defines a binary network where either an edge between « and
v is present, i.e. {u,v} € E oritis not, i.e. {u,v} ¢ E. This can be extended to the idea of non-binary (or weighted)
edges later on. But many networks of interest take a binary form and that is the type of network which has received
the most attention in the literature.

The number of vertices/nodes, |V|, is known as the order of the graph G, while the number of edges, |E| is known as
the size of the graph.

Network edges can be undirected or directed.

@ Example 1.

For example, if the question is ‘are Ahmed and Sofia friends’, the answer can be yes or no: as seen in
Figure 1 ‘yes’ indicates an edge exists between the nodes representing these two; ‘no’ indicates no edge
between the two.

Alternatively, there can be two questions: ‘does Ahmed consider Sofia a friend’ and ‘does Sofia consider
Ahmed a friend’, resulting in four possibilities seen in Figure 2: (a) both say yes so a directed edge goes
from the node representing Ahmed to the one representing Sofia and vice versa; (b) both say no, so no
edges exist between the two nodes; (c) Ahmed says ‘yes’ but Sofia says ‘no’ (ouch!) so an edge exists from
Ahmed to Sofia but not from Sofia to Ahmed; or (d) Ahmed says ‘no’ but Sofia says ‘yes’ (again, ouch) so
an edge exists from Sofia to Ahmed but not from Ahmed to Sofia.

In the undirected network case, if the edge {u, v} exists in E then the edge {v,u} will also (or is assumed to, if we want

0 O (o)

(a) Friendship (b) No friendship

oo | oo

(c) Unrequited friendship (d) Unrequired friendship (other direction)

Figure 2: Four possibilities for (directed) friendship

to avoid duplication). Whereas in the directed edge case, we have four possibilities for each pair of nodes u and v:
both {u, v} and {v,u} arein E, only {u, v} but not {v,u} are in E, only {v,u} but not {u, v} are in E or neither {u, v}
and {v,u} arein E.

A pair of nodes (whether connected or not) is often referred to as a dyad.

Notation

Network data can be represented in a number of different ways in practice. We can give a list of paired node names
that represent edges which define the network. Or we can give a list of the node names and a square binary matrix
(often known as a sociomatrix or adjacency matrix). The matrix has the same number of rows as columns and each
row and column represents a node. An entry in the matrix at the i’ row and j”* column represents the presence with
a 1 or absence with a O of an edge from the i”* to j"* node (if directed or between them if undirected).

Q Example 2.

So the Ahmed/Sofia undirected friendship question would be represented either by

0 11

=11 0

if they're friends or))
0 0

X= | 0 0 |

if not. For the directed friendship questions, the state of their friendship would be represented by

TR
X=11 0|
if both says the other is a friend, or)
0 O
X=1o o

if neither says the other is a friend, or

0 1
x=[0 o]
if Ahmed says Sofia is a friend but not the reverse (assuming the first node is Ahmed and the second Sofia)
or
0 0
<[V 0]

if Sofia says Ahmed is a friend but not the reverse.

Note that sociomatrices representing undirected edges will always be symmetric matrices, because X;; = X;;. Note
also, that the diagonal entries are all zero, the convention being that a node cannot have an edge with itself. (A tie or
edge of a node with itself would be called a loop.)

Network representations
https://youtu.be/PuEc40d7vOU
Duration: 8m14s

Graph representation

Simple Summaries

If our graph/network information is in a sociomatrix form then we can easily calculate some simple descriptive statistics
using some matrix manipulation.

Graph size The size of a graph is equal to the number of ties that are observed in it. For a directed graph, this can be
found by summing the entries of the sociomatrix (directed size=2f‘:1 Zfﬂ X;;), for an undirected graph it is given by

the summation of the sociomatrix entries divided by 2 (undirected size = Zf.‘zl Zj?zl Xij/2). We could code thisinR as:

For a directed graph
size.dir.X <- sum(X)

For an undirected graph
size.undir.X<-sum(X)/2

Graph density The density of a graph is related to how many edges are observed versus how many edges are possible
given the number of nodes in the graph. If we are in a directed graph with every possible pair of the k nodes having
an edge, we would have k x (k — 1) edges. In an undirected graph this will be halved, i.e. k x (k — 1)/2. So the closer
our observed number of edges is to this theoretical maximum, the more dense (or connected) our network is. So the
density of a graph is given by the equation:

number of edges observed in the graph

raph density = .
grap y maximum number of edges possible in the graph

To find the number of edges in a directed graph, we simply add together all the entries in the sociomatrix so our
equation becomes:
25:1 Z?:l Xij

kx(k-=1) °
To find the number of edges in an undirected graph, we simply add together all the entries in the sociomatrix and
divide by 2 so our equation becomes:

density of directed graph X =

k k k k
i=1 2]’:1 Xij/2 _ 4=l 2]’:1 Xij

density of undirected graph X = ix(k-D2 - kxk-D

We could code this in R as:
dens.X <- sum(X)/(nrow(X)*(nrow(X)-1))

Notice that both the directed and undirected graphs use the same calculation for density (as the 2's cancel out).

https://youtu.be/PuEc4Od7vOU

Reciprocity If we are in a directed graph and node u has an edge with v and also, node v has an edge with u, then
we say the tie is reciprocated. Often of interest in directed graphs is the proportion of times a tie is reciprocated. We
can calculate this by counting the number of times X;; = X;; = 1 and dividing by the number of pairs of nodes where
we have at least one tie.

Dizji<j HUXij = Xji = 1]

Reciprocity of X = s
Zizji<j UXij + Xji > 0]

where 1[] is an indicator function which gives the value 1 if the statement in the brackets is true and O otherwise.
Using the transpose of the matrix (where X;; becomes X;), we can code this simply in R as:

X.Xt<-X*t(X) ##this will give a matrix with 1's for reciprocal ties
no.recip.ties<-sum(X.Xt==1)/2

no.non.recip.ties<-sum(X-X.Xt)
prop.recip.X<-no.recip.ties/(no.non.recip.ties+no.recip.ties)

Directed graphs with all ties reciprocated will have reciprocity equal to 1, while a purely unidirectional graph will have
reciprocity equal to 0. Most directed graphs have a value that falls between 0 and 1. Other more complex summaries
will be discussed in the section on Summary Statistics.

Node degree For a directed graph, we define in-degree as the number of edges leading into a node and out-degree
as the number of edges originating from a node. In terms of the friendship example, in-degree would be how popular
a person was (how many people said they were friends with that person) and out-degree would be how outgoing that
person was (how many people that person said they were friends with). For node i the in-degree would be calculated
as:

k
in-degree of nodei= » Xj;, (1)
j=1
i.e. the sum of the i column of X and out-degree would be:
k
out-degree of node i = Z X;;, (2)
j=1

i.e. the sum of the i’ row of X. This can be simply calculated in R for all nodes as:

in.degree<-colSums (X)
out.degree<-rowSums (X)

Note there are simple commands in the various SNA packages that perform these functions, so you won't have to do
them from scratch but it's good to have an idea what they are doing.

Managing Network Data
Reading in different forms of network data

Sociomatrix by hand One way of entering network information by hand is to enter the sociomatrix into R using the
matrix command. The reciprocal or undirected Ahmed/Sofia graph would be entered via the following:

sociomatrix<-matrix(c(0,1,1,0),2,2,byrow=T)
rownames (sociomatrix)<-colnames(sociomatrix)<-c("Ahmed","Sofia")

Suppose we wanted to enter a more complex graph like the following:

sociomatrix<-matrix(c(0,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0),4,4,T)
rownames (sociomatrix)<-colnames (sociomatrix)<-c("Ahmed","Sofia","Berthold","Carlo")

@ Task 1.

Take a look at what this command produces and try to describe the friendship structure that you see
in words. How many edges does the graph have? How dense is it? What proportion of friendship ties
are reciprocated? What is the distribution of in-degree and out-degree of the nodes? Who is the most
popular person in the network? Who is the friendliest?

We could also read in data in the sociomatrix form from a matrix recorded in an external file (say a .csv or .txt file) use
the read.table or read.csv command. We will go through an example of this later.

One disadvantage of sociomatrices is that as the number of nodes increases, the number of entries to be stored
increases dramatically. In a lot of network examples, many of these entries will be zero, i.e. the matrix is sparse, so a
more efficient way of storing the information may be as a list of edges instead. Each entry/row in such a list will be a
pair of node identifiers with an implied edge going from the first node entry to the second one.

List of edges by hand We can create a network using a list of edges in the following way. For our friendship example
we had a total of 7 edges (2 reciprocated, 3 not) which could be read in as follows:

friend.edges<- rbind(c("Ahmed","Sofia"),
c("Sofia","Ahmed"),
c("Berthold","Ahmed"),
c("Berthold","Sofia"),
c("Berthold","Carlo"),
c("Carlo","Sofia"),
c("Carlo","Berthold"))

friend.edges<-data.frame(friend.edges)

We will talk in the next section about changing this format into different types of network objects.

Changing to network format for statnet

If we have a sociomatrix or edge list, we may need to transform it into a particular class of R object in order to be
able to use a particular library's commands to analyse the network. For the statnet library, we want to create a
network object using the network command. For example using this command to format a sociomatrix, we set the
matrix.type argument to "adjacency":

library(statnet)

sociomatrix<-matrix(c(0,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0),4,4,T)
rownames (sociomatrix)<-colnames(sociomatrix)<-c("Ahmed","Sofia","Berthold","Carlo")
netl<-network(sociomatrix,matrix.type="adjacency")

Note that if you do not give the matrix row and column names, the default labeling for nodes will just be numbers.

Task 2.

Take a look at the summary of the object created with the previous code. This can be a useful check to
see if the network object was successfully created.

If, instead of a sociomatrix, we have an edgelist, we set the matrix.type argument in the network command to
"edgelist" instead. That is,

netl.1<-network(friend.edges, matrix.type="edgelist")

Task 3.

Check to see that this will give the same network as before.

Note that if we have left out node names earlier in the process, we can add them to the network object using the
network.vertex.names

network.vertex.names(netl)<-c("Ahmed","Sofia","Berthold","Carlo")

If you need to go in the other direction you can use the as.sociomatrix command to force a network object into a
matrix format. Similarly you can use the as.matrix command to extract a list of edges by using the following code:

as.matrix(netl, matrix.type="edgelist")

Adding other information to the network in statnet

Other information for a network could include node covariates, edge covariates and other information about the
network itself (e.g. whether it’s directed, if loops are allowed, etc.).

Adding node characteristics to a network object In statnet we can use the set.vertex.attribute command
to attached node characteristics to the network object. For example, if we wanted to add gender information to our
friendship network:

network: :set.vertex.attribute(netl, "gender",c("M","F","M","M"))

If we take a look at the summary of the network object now, we see that it includes a tabulation of our categorical
vertex attribute gender (if it were a continuous attribute it would have given a 5-number summary of it instead, i.e. min,
median, max, 1st and 3rd quartiles)

summary (net1)

Network attributes:
vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE
bipartite = FALSE
total edges =7

#it missing edges = 0O

non-missing edges = 7

density = 0.5833333

#

Vertex attributes:

##

gender:

character valued attribute

#it attribute summary:

F M

1 3

#it vertex.names:

character valued attribute

4 valid vertex names

##

No edge attributes

##

Network adjacency matrix:

Ahmed Sofia Berthold Carlo
Ahmed 0 1 0 0
Sofia 1 0 0 0
Berthold 1 1 0 1
Carlo 0 1 1 0

To check what vertex attributes are available with a network object we can use the 1ist.vertex.attributes com-
mand which will list the names of all covariates. To extract covariate values we use the get .vertex.attribute asin
the following example:

network: :get.vertex.attribute(netl, "gender")

[1] "M" "F" "M" "M"

network: :get.vertex.attribute(netl, "vertex.names")
[1] "Ahmed" "Sofia" "Berthold" "Carlo"

An equivalent way of extracting this information is using the %v% command, e.g. net1 %v% “gender”. If you look at the
summary of a network object with node covariates, it will include tabulation summaries of categorical covariates and
summary statistics for continuous covariates. To remove a node covariate, we use the delete.vertex.attribute
command.

Adding edge characteristics to a network object Adding edge covariates follows the same form as for nodes (except
edge covariates will be in matrix form while node covariates will be vectors), using commands set . edge . value to add
a covariate (in matrix form), get . edge . attribute or get . edge . value to extract the covariate values in list form and
list.edge.attributes to get a list of the edge covariates available in the object. For example if we had a weight or
strength of association measure between pairs of people, we could use that as an edge covariate:

w.mat<-matrix(c(0,3,0,0,2,0,0,0,1,1,0,3,0,1.5,4,0),4,4,T)
set.edge.value(netl,"weight",w.mat)

If we want to extract the covariate in matrix form we can use the as.sociomatrix command in the following way:

as.sociomatrix(netl,"weight")

#i#t Ahmed Sofia Berthold Carlo
Ahmed 0 3.0 0 0
Sofia 2 0.0 0 0
Berthold 1 1.0 0 3
Carlo 0 1.5 4 0

To remove an edge covariate, use the delete.edge.attribute command. For further information on these methods,
look at the help file for attribute.methods.

Changing to network format for igraph

First make sure you detach the statnet packages before loading the igraph library (this is to avoid masking functions
with the same names in both).

detach("package:statnet", unload=TRUE)
detach('"package:tsna'",unload = TRUE)
detach("package:sna", unload=TRUE)
detach("package:ergm.count", unload=TRUE)
detach("package:tergm", unload=TRUE)
detach("package:ergm", unload=TRUE)
detach("package :networkDynamic", unload=TRUE)
detach("package:network", unload=TRUE)

Warning: 'network' namespace cannot be unloaded:
namespace 'metwork' is imported by 'intergraph' so cannot be unloaded

library(igraph)

Similar to statnet, you can either create a network using a sociomatrix or an edge list. Using the graph_from_adjacency_matrix
command we can read in the same friendship matrix as before:

inetl<-graph_from_adjacency_matrix(sociomatrix)
This will create an igraph network object. Looking at a summary of this object will be a little more cryptic than before:
summary (inet1)

IGRAPH 0O8ceela DN-- 4 7 —-
+ attr: name (v/c)

Here ‘D’ denotes directed graph, ‘N’ denotes named nodes. The first number is the number of nodes and the second,
the number of ties.

We can use the command graph_from_edgelist to produce a similar object from an edge list instead of a sociomatrix.

inetl.1<-graph_from_edgelist(as.matrix(friend.edges) ,directed = T)

Adding other information to the network in igraph

Adding node characteristics to anigraph object The V command allows us to add node/vertex covariates to an igraph
object or view covariates as well, in the following way:

#Adding gender

V(inetl)$gender <- c("M","F","M","M")
#Looking at the gender covariate
summary (V(inet1) $gender)

#it Length Class Mode
4 character character

Gender will now appear as part of the summary output.

Adding edge characteristics to an igraph object The E command allows us to add edge covariates to an igraph object
or view covariates as well, in the following way:

#Adding a weight for strength of friendship
E(inet1)$strength <- ¢(3,3,1,2,2,1,4)
#Looking at the strength covariate

summary (E(inet1) $strength)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.500 2.000 2.286 3.000 4.000

If we look at the summary information now,
summary (inet1)

IGRAPH 0O8ceela DN-- 4 7 —-
+ attr: name (v/c), gender (v/c), strength (e/n)

we can see the covariates listed with ‘v’ or ‘e’ depending on whether it is a vertex or edge covariate and ‘n’ or ‘¢’
depending on whether the covariate is numeric or categorical.

Converting between statnet and igraph

The library intergraph allows us to convert from a statnet network object to an igraph object and vice versa. The
command to force into network object is asNetwork and the command to force into igraph object is asIgraph.

library(intergraph)

inetl.2<-asIgraph(netl)

netl.2<-asNetwork(inet1)

Importing from other file types

The statnet package allows reading in Pajek format file (.net or .paj) using the read.paj function. igraph allows
something similar for Pajek files as well as GraphML and UCINet DL files using the read_graph command.
Extracting sub-graphs and isolates

Extracting sub-graphs based on node characteristics Suppose we wanted only to look at the subgraph of male nodes
in the friendship network example, we can use the command get . inducedSubgraph to do so in the following way:

#Hit Installed ReposVer Built

ergm "4.0.1" "4.1.2" "4.0.4"

networkDynamic "0.11.0" "O0.11.1" "4.0.2"

tergm "4.0.1" "4.0.2" "4.0.2"

tsna "0.3.3" "0.3.5" "4.0.4"

library(statnet)

netM<-get.inducedSubgraph(netl,which(netl %v’, "gender" == "M"))

Similarly if we had a numeric covariate we could select a subgraph based on cut-offs or ranges of values for this
covariate in a similar fashion. Instead of the get . inducedSubgraph command we could also use the %s% command.

netnew <- netl %s’ which(numeric.covariate>1)

Extracting sub-graphs based on edge characteristics If we are only interested in those set of edges with a certain
value of attribute, we can look at summaries of the number of edges with certain values in the following way:

table(netl %e), "weight")

#it
#i#t 115 2 3
2 1 1 2 1

10

#If we were only interested in edges with weight greater than 2, say

#First we extract a matrix version of the edge covariate
w.val<-as.sociomatrix(netl,"weight")

#Replace the elements below the threshold with O

w.val[w.val<2]<-0

#Create a new sociomatrix with ties corresponding to the new zeros filtered out
net.filt<-as.network(w.val,directed=TRUE,matrix.type="a",ignore.eval=FALSE,
names.eval="weight")

Removing isolates Isolates are nodes in a graph that are disconnected from all other nodes. There are no edges
connecting them to others, i.e. in-degree and out-degree are both O.

Let's create a new friendship sociomatrix with a newcomer who hasn’t had a chance to make friends:

new.soc<-rbind(cbind(sociomatrix,rep(0,4)) ,rep(0,5))
rownames (new.soc)<-colnames(new.soc)<-c("Ahmed","Sofia","Berthold","Carlo","Sean")
net.new<-network(new.soc)

The command isolates will return the indices of those nodes with degree 0. We can use the delete.vertices
command to remove these but it is a good idea to create a copy of the network object to do this on so that you still
have the original to return to.

net.copy <- net.new
delete.vertices(net.copy,isolates(net.copy))

Changing a directed graph to undirected The command to change from a directed to undirected graph is symmetrize
(appropriately enough if you recall the sociomatrix of an undirected graph is symmetric).

net.symm.weak<-symmetrize(netl,rule="weak")
net.symm.strong<-symmetrize(netl,rule="strong")

The argument rule being set to "weak" means an undirected edge will be defined between any two nodes that have at
least one directed edge connecting them. In comparison, setting this to "strong" would require that only reciprocated
edges will be allowed in the new network. Different rules suit different situations.

This command will produce an unlabeled symmetric matrix that will need to be converted into a network or igraph
object again.

Task 4.

Compare the two different symmetrized matrices for differences.

Doctor network analysis example

@ Task 5.

Read in the adjacency matrix ckm_network.dat (use the read.table command). Check that there are
246 nodes. This is from one of the classic studies of network analysis and the diffusion of innovations
which concerned the spread of a new antibiotic among the doctors in a group of four small towns in the
Midwest in the 1950s. The ties indicate pairs of doctors that were socially linked (undirected tie). Explore
the data using the skills from the previous sections and record your observations in the space provided.
What do the degree distributions of nodes look like? Are there any isolates?...

Visualizing Network Data

One of the most powerful ways to explore network data is visually. For reasonable size graphs, this should be the first
thing you look at (unfortunately for graphs of large order, say tens of thousands of nodes or more, this tends to result
in an uninformative blob of ink). Because there are no natural co-ordinates for nodes in most circumstances, plotting
the configuration of nodes can take any number of forms. Some types of plotting can make evaluating certain graph

11

characteristics easier than others so the type of plot you use should be chosen with that goal in mind. We'll discuss a
couple of different graph plotting methods but there are many more out there if you look.

The standard plot command in statnet allows for a 2-d graph visualization with options for adding text labels to the
nodes, different colours according to node categories and has a number of different algorithms to decide on the node
configuration.

6 Example 3.

Plotting some friendship data, we can add the individual’'s name, colour the node differently according to
gender and manipulate the graph options to change the size of the lines, arrowheads and node circles.

Here we add a new actor “Niamh” (who unlike Sean from the previous example, actually made a friend!).

sociomatrix<-matrix(c(0,1,0,0,0,1,0,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0),5,5,T)
rownames (sociomatrix)<-colnames (sociomatrix)<-c("Ahmed","Sofia","Berthold","Carlo",
"Niamh")

library(statnet)

net3<-network(sociomatrix,matrix.type="adjacency")
plot(net3,vertex.col=c(4,2,4,4,2) ,vertex.cex=3,label=network.vertex.names(net3),
arrowhead.cex=3,edge.lwd=2)

Sofia
Niamh

Ahmed

Berthold

This command uses the default plotting method which is fruchtermanreingold, a variant of Fruchter-
man and Reingold'’s force-directed placement algorithm. This algorithm tries to pull together groups of
nodes that are closely linked and push apart ones that are not. It works by iteratively adjusting the con-
figuration of the network until the optimum of some measure of overall network energy has been found.
This can be changed by changing the mode argument.

plot(net3,vertex.col=c(4,2,4,4,2) ,vertex.cex=3,label=network.vertex.names (net3),
arrowhead.cex=3,edge.lwd=2,mode="circle")

Ahmed

Sofia
Niamh

Carlo
Berthold

Note, if you run the same command again, you'll get a slightly different plot.

It's a good idea to run a couple of different visualizations to see what they show but remember that line
length is arbitrary in these plots, so a pair of nodes connected by a short line are no more connected than
if it had been a long line.

In addition to the basic plot command in statnet, there is the slightly more flexible command gplot
which also has the circle and Fruchterman and Reingold methods but has additional options like random,

12

eigen and spring. This is very similar to the plot command and an example is given below.

gplot (net3,vertex.col=c(4,2,4,4,2),vertex.cex=3,label=network.vertex.names (net3),
arrowhead.cex=1.5,edge.lwd=2, mode="spring")

Carlo

Sofia

Niamh

Ahmed Berthold

Rather that indicating grouping of nodes by colour, we could also use different node shapes to distinguish
them as in the following code and resulting plot:

plot(net3,vertex.sides=c(3,50,3,3,50),vertex.cex=3,label=network.vertex.names (net3),
arrowhead.cex=3,edge.lwd=2)

Sofia

Niamh O Carg

Ahmed

Berthol

Note that 50 sides (vertex.sides=50) is the default, which produces a circle. Of course, you could use both
colour and shape, with one attached to one categorical covariate and the other attached to another.

The igraph library also has a function plot.graph which works in a similar fashion. Greater control over manual
adjustment of network graph co-ordinates is possible, see Chapter 4 in D. Luke's A User’s Guide to Network Analysis in
R for details. He also discusses how to make node colours partially transparent to help with overlap.

Interactive graphics

Gelphi is probably the best application for the creation of interactive network visualizations but there is some limited
interactive graphing functionality in the igraph package using the tkplot command, which allows manual manipula-
tion of graphs (and storing of the final manipulated co-ordinate system).

library(intergraph)

inet3<-asIgraph(net3)

library(igraph)

coord<-tkplot (inet3, vertex.size=3, vertex.label=c(4,2,4,4,2))

MCoords <- tkplot.getcoords(coord)

plot(inet3, layout=MCoords, vertex.size=5, vertex.label=NA, vertex.color="lightblue")

There is also potential functionality for web-publishing interactive network graphics (see Chapter 6 of D. Luke's A
User’s Guide to Network Analysis in R or Chapter 3 of Statistical Analysis of Network Data with R by Eric D. Kolaczyk and
Gabor Csardi.

ggplot2 style network plots

If you prefer to use the ggplot framework for visualizing data then the library GGally has a command ggnet that
allows for plotting network objects in this way.

13

@ Task 6.

We are going to look at the doctor data network. Read in the adjacency matrix ckm_network.dat (use
the read.table command). The ties indicate pairs of doctors that were socially linked (undirected tie).
Take a look at some plots of this data. What interesting elements jump out at you? Which type of plot
did you find most helpful?

Start by loading in the data and transforming it into a network object.
doc.data<-read.table("ckm_network.dat")
library(statnet)

set.seed(123)
doc.net<-network(as.matrix(doc.data), directed = F,matrix.type="adjacency")

@ Supplementary material:

You can do a lot of really clever things with plotting networks beyond the basics discussed here.

Some really nice network visualisation examples:

1. Porfiry: Visualisation of the Mueller Investigation
2. Non-standard graph representation of patients moving between different states of health

3. Dynamic visualisation of relationships between ancient philosophers

14

https://fathom.info/porfiry/
https://flowingdata.com/2016/05/23/network-visualization-shows-transitions-between-states/
https://homepage.univie.ac.at/noichlm94/full/Greeks/index.html

Answers to tasks

Answer to Task 1. First let’s look at the adjacency matrix:

sociomatrix<-matrix(c(0,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0),4,4,T)
rownames (sociomatrix)<-colnames (sociomatrix)<-c("Ahmed","Sofia","Berthold","Carlo")
sociomatrix

##t Ahmed Sofia Berthold Carlo
Ahmed 0 1 0 0
Sofia 1 0 0 0
Berthold 1 1 0 1
Carlo 0 1 1 0

We see zeros along the diagonal, as expected with some people’s rows/columns having more 1’s than others, e.g. Carlo
seems more outgoing (two 1's in row) than Sofia (one 1 in row) but he seems to be less popular (only one 1 in column)
than her (three 1’s in column) too.

We now use our previous graph summaries calculation code to examine the overall structure of the graph:

X<-sociomatrix

#edges (this is a directed graph so we use the first option)
size.dir.X <- sum(X)

size.dir.X

[11 7

#density
dens.X <- sum(X)/(nrow(X)*(nrow(X)-1))
dens.X

[1] 0.5833333

#reciprocity

X.Xt<-X*t(X) ##this will give a matrix with 1's for reciprocal ties
no.recip.ties<-sum(X.Xt==1)/2

no.non.recip.ties<-sum(X-X.Xt)
prop.recip.X<-no.recip.ties/(no.non.recip.ties+no.recip.ties)
prop.recip.X

[1] 0.4

#in-degree
in.degree<-colSums (X)
in.degree

#i# Ahmed Sofia Berthold Carlo
#i# 2 3 1 1

#out-degree
out.degree<-rowSums (X)
out.degree

#i# Ahmed Sofia Berthold Carlo
#i#t 1 1 3 2

So we can see there are 7 edges for the 4 friends which represents a density of 0.58 which is reasonably dense (over
50% of the possible edges). Only 40% of ties were reciprocated (this is for non-null ties, we're not counting the number
of times neither person connected). Sofia is our most popular person with the largest in-degree while Berthold is our
most out-going person with the largest out-degree.

Anbwar yd Saskthet)

sociomatrix<-matrix(c(0,1,0,0,1,0,0,0,1,1,0,1,0,1,1,0),4,4,T)

rownames (sociomatrix)<-colnames(sociomatrix)<-c("Ahmed","Sofia","Berthold","Carlo")
netl<-network(sociomatrix,matrix.type="adjacency")

summary (net1)

15

Network attributes:
vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE
bipartite = FALSE
total edges =7

missing edges = 0

non-missing edges = 7
density = 0.5833333
##

Vertex attributes:
#i#t vertex.names:

character valued attribute

4 valid vertex names

##

No edge attributes

#i

Network adjacency matrix:

Ahmed Sofia Berthold Carlo
Ahmed 0 1 0 0
Sofia 1 0 0 0
Berthold 1 1 0 1
Carlo 0 1 1 0

We can see the output matches the summaries we produced before (although it does not automatically give reciprocity
or degree information).

Answer to Task 3. Let’s take a look at the alternative way of specifying the adjacency matrix.

friend.edges<- rbind(c("Ahmed","Sofia"),
c("Sofia","Ahmed"),
c("Berthold","Ahmed"),
c("Berthold","Sofia"),
c("Berthold","Carlo"),
c("Carlo","Sofia"),
c("Carlo","Berthold"))
friend.edges<-data.frame(friend.edges)
netl.1<-network(friend.edges, matrix.type="edgelist")
summary (netl.1)

Network attributes:
vertices = 4

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE
bipartite = FALSE
total edges =7

#i# missing edges = 0O

non-missing edges = 7
density = 0.5833333
#i#t

Vertex attributes:
vertex.names:

character valued attribute
4 valid vertex names

#

No edge attributes

##

Network adjacency matrix:

16

Ahmed Sofia Berthold Carlo

Ahmed 0 1 0 0
Sofia 1 0 0 0
Berthold 1 1 0 1
Carlo 0 1 1 0

This is identical to the previous output.

Answer to Task 4. Looking at the matrices themselves:

net.symm.weak<-symmetrize(netl,rule="weak")
net.symm.strong<-symmetrize(netl,rule="strong")
net.symm.weak

(,1] [,2]1 [,3] [,4]
[1,] 0 1 1 0
[2,] 1 0 1 1
[3,] 1 1 0 1
[4,] 0 1 1 0

net.symm.strong

#i# [,11 [,2]1 [,3] [,4]
[1,] 0 1 0 0
[2,] 1 0 0
[3,] 0 0 0 1
[4,] 0 0 1

we can see that in the latter case (i.e. when rule is set to "strong") the 1's that appear in the matrix reflect the
reciprocated edges of the directed graph.

Answer to Task 5. First we need to read in the data and put it in an appropriate format.

doc.data<-read.table("ckm_network.dat")
library(statnet)

Next let’s calculate some summaries by hand. (We can compare them later using the summary command). We do not
need to calculate reciprocity as this is an undirected graph.

#Size
sum(doc.data) /2

[1] 924

#Reciprocity not needed here (as symmetric matrix)
#Density

sum(doc.data)/(nrow(doc.data)* (nrow(doc.data)-1))
[1]1 0.03066202

#Node degree
degree<-rowSums (doc.data)
summary (degree)

#i# Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 5.000 7.000 7.512 9.000 28.000

hist(degree,breaks = 20)

17

Frequency

Note that in the hist function, we look at different numbers of boxes or splits summarising the data using the breaks
argument. Here we set it to 20 but this can be changed and it's worth playing around with this to see how it affects

Histogram of degree

20

10

[T 1]

15

degree

the resulting plot.

We see that although it seems a big graph with 924 (undirected) edges, it actually has very few edges for the number
of nodes (density is only 3%). The histogram of node degree tells us that there are a few very influential or popular
doctors (the extreme values above 20) but most doctors have between 5 and 9 connections with an average number
of connections of around 7/8. (Remember as there are 246 nodes, the maximum number of connections any one node
can possibly have is 245. None of our doctors have anywhere near that amount.)

Next, let’s turn this into a network object and check our previous work.

doc.net<-network(as.matrix(doc.data), directed = F,matrix.type="adjacency")

summary (doc.net,print.adj=F)
y p J

Network attributes:

#i#
##
##
##
#it
#i#t
##
##
##
##
#i#
#i#t
##
##
##
#Hit

vertices = 246
directed = FALSE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges = 924
missing edges = 0O
non-missing edges = 924
density = 0.03066202

Vertex attributes:

vertex.names:
character valued attribute
246 valid vertex names

No edge attributes

isolates(doc.net)

[1] 154 165 195 201 203

We see that there are 5 doctors with no connections at all.

18

Answer to Task 6. Let’s take a look at a couple of different representations of the doctor data:

gplot(doc.net)

From the first and third plots, it is clear there is a group structure to this data with one large group and three small
groups. While we can see the isolates in the second plot, the group structure is not as clear and in the third plot, the
isolates are not clear. So in these terms, the first type of plot seems to be best.

19

	Statistical Network Analysis
	A totally different kind of statistics!

	Terminology, Notation and Simple Summaries
	Terminology
	Notation
	Simple Summaries

	Managing Network Data
	Reading in different forms of network data
	Changing to network format for statnet
	Adding other information to the network in statnet
	Changing to network format for igraph
	Adding other information to the network in igraph
	Converting between statnet and igraph
	Importing from other file types
	Extracting sub-graphs and isolates

	Visualizing Network Data
	Interactive graphics
	ggplot2 style network plots

	Answers to tasks

