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Point estimation and Likelihood

Introduction

In the material for week 4 (in part 1 of this course) we introduced the idea of testing and interval estimation forpopulation parameters in contexts where we assume that our continuous (or binary) data have arisen from (or are wellapproximated by) a normal distribution. (This material is available as supplementary material on Moodle for anyonethat did not take part 1 of this course). For each context, we established a best guess for the values of our unknownpopulation parameters of interest, e.g. population mean, population proportion, (we refer to these as point estimates)and we account for variability and hence uncertainty in the estimation through testing and/or producing confidenceintervals as part of statistical inference. In the contexts that we have considered so far there are natural estimatorsfor the unknown parameters of our distribution based on our sample mean (and sample proportion). However, it isnot always the case that the estimators for distributions of interest arise naturally. To help us generalise to estimatingthe parameters for other distributions (which as you’ve seen in probability are useful depending on the context), inthis week we will formalise the idea of point estimators and their properties, and generalise how to determine pointestimators (and hence point estimates) for the population parameters of discrete probability distributions through themethod ofMaximum Likelihood.
If we return to our initial diagram for the course, shown below in Figure 1, we can see that we’ve suggested threealternative approaches which use a probability model to describe our data.
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Figure 1: Approaches to Learning from Data

In this course we will consider likelihood. This is going to allow us to introduce a general framework for point esti-mation, interval estimation and hypothesis testing for estimating parameters for an assumed probability distribution.In simplest form, this allows us to make conclusions, for example, about the mean, proportion, variance, rate etc. for
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particular contexts. However, additionally the course predictive modelling introduces that we can obtain more infor-mation by investigating relationships between variables, and estimating a response variable using information fromother (potential) explanatory variables, through writing down an appropriate statistical model. Predictive modellingwill introduce the idea of least squares to do this. Likelihood can also be used, and provides more flexibility whenextending probability distribution assumptions beyond the normal distribution. We’ll consider the connection here ina little more detail when we introduce likelihood for the normal distribution in week 8.
We’ll introduce the ideas of Bayesian inference through supplementary material for this course (from week 7 onwards)and these ideas will be extended upon in the courseUncertainty assessment and Bayesian computation. Likelihood isalso a key component of the Bayesian framework where we use likelihood in order to describe our data and we updateour data using prior beliefs about our population parameters.

Week 5 learning material aims

The material in week 5 covers:
• properties of point estimators;• the idea and concept of maximum likelihood;• maximum likelihood estimation for discrete distributions.

Point Estimation

As we have already seen, a point estimate is a best guess at the value of an unknown population parameter. It is asingle number, based on a sample of data and for common statistical models such as the binomial and normal, seen inweek 4, a little thought about the meaning of a parameter suggests a natural way to estimate it.
Binomial model

In the binomial model with parameter 𝜃 (0 ≤ 𝜃 ≤ 1), 𝜃 is the probability of a success, i.e. the proportion of successesin the population (using the relative frequency definition of probability). If a sample of 𝑛 trials is conducted, in which
𝑥 successes and 𝑛 − 𝑥 failures are recorded, then an obvious estimate of 𝜃 is the proportion of successes in the sample,i.e.

𝜃 =
𝑥

𝑛
.

In week 4 example 4, we used the sample proportion of people that could taste the chemical PTC to estimate theproportion of people that could taste PTC. For this we had
156
213 = 0.732 or 73.2%.

Normal model

In a similar way, in the normal model with parameters 𝜇 and 𝜎2 (𝜎 ≥ 0), 𝜇 is the population mean and 𝜎2 is thepopulation variance. If values 𝑥1, 𝑥2, . . . , 𝑥𝑛 are observed, then it is natural to estimate the population mean 𝜇 by thesample mean,

𝜇 = 𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 .

A natural estimate of the population variance 𝜎2 is the sample variance,

𝜎̂2 = 𝑠2 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2.

In example 1 fromweek 4, we used the sample mean IQ of 92.2 from a sample of 39 people to estimate the populationmean IQ.
A further example could be for the Poisson distribution.
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Poisson model

In the Poisson model with parameter 𝜆 (𝜆 ≥ 0), 𝜆 is the expected value, or population mean number, of events ina specified interval. If independent counts 𝑥1, 𝑥2, . . . , 𝑥𝑛 are observed in different time intervals, then an obviousestimate of 𝜆 is the sample mean number of events, i.e.

𝜆 = 𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 .

Example 1 (Car accidents on a motorway).

The numbers of car accidents at a fixed point on a motorway were recorded for 20 consecutive months.The results are as shown below, with 𝑥𝑖 being the number of accidents at the fixed point in the 𝑖’th month.
Month 1 2 3 4 5 6 7 8 9 10

No. of accidents 2 2 1 1 0 4 2 1 2 1
Month 11 12 13 14 15 16 17 18 19 20

No. of accidents 1 1 3 1 2 2 3 2 3 4

𝜆 = 𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 =
1
20 (2 + 2 + 1 + 1 + · · · + 4) = 38/20 = 1.9.

On average, 1.9 accidents occurred each month.

Definition and Properties of Point Estimators

In general, the estimate of a parameter will vary from sample to sample. This leads to the following definition(s).
Suppose we intend to observe data X = (𝑋1, 𝑋2, . . . , 𝑋𝑛) from a probability model with an unknown parameter 𝜃. Inthis notation, we are referring to 𝜃 as any unknown parameter for any probability distribution.

Definition 1.

A point estimator of 𝜃 is an algebraic function, 𝑡 (X), of the data.

Definition 2.

A point estimate is a particular numeric value of the function, 𝑡 (x), obtained from a particular set of data,
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛).

Example 2 (Poisson model - estimating 𝜆).

In the Poisson model:
• the point estimator for the population parameter is 𝜆 =

∑𝑛
𝑖=1 𝑋𝑖/𝑛, where 𝑋𝑖 is the number of eventsat time or point 𝑖 and 𝑛 is the sample size.

• the point estimate is the numerical example found from our sample of data.
For example, in example 1 here on car accidents the point estimator is∑𝑛

𝑖=1 𝑋𝑖/𝑛, where 𝑋𝑖 is the numberof events at time 𝑖 and the point estimate is 𝜆 = 1.9 accidents each month.
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Task 1.
State the point estimators and point estimates for:

• 𝜃, the population proportion of tasters in the binomial model for the PTC example given on page 3,where the number of tasters was 156 and the total sample size was 213;
• 𝜇, the population mean IQ in the normal model for the IQ example given on page 3, where thesample mean was 92.2.

In any situation there will be a variety of possible estimators and we need some way of choosing between them.
In order to estimate our true population parameter(s), we would like:

1. our estimator to have values that cover the same range;
2. an estimator which, on average, provides the true population parameter when calculated over all possible sam-ples;
3. the variance of our point estimates obtained over all possible samples to decrease towards zero as the samplesize increases towards the size of the population.

More formally, we would like any point estimator 𝑡 (X) to have the following properties, for a general populationparameter 𝜃:
1. The range of 𝑡 (X) should be the same as the range of 𝜃.

2. 𝑡 (X) should be unbiased, i.e. (the bias for an estimator is zero).
Although we cannot require 𝑡 (x) to be equal to 𝜃 for every possible sample, x, we do require that, on averageover all possible samples, 𝑡 (X) is equal to 𝜃,

E{𝑡 (X)} = 𝜃.

3. An estimator can be unbiased but can vary so much that it is not useful. It is useful, therefore, to consider thevariance of an estimator as a further property of its reliability.
𝑡 (X) should be consistent. As the sample size (𝑛) gets bigger, then the probability distribution of the estimator shouldbecome more concentrated around the true value of 𝜃.
This means that

Var{𝑡 (X)} → 0 as 𝑛→ ∞,

(when 𝑡 (X) is unbiased).
This means that as the sample size increases the procedure delivers more and more reliable results.
There are additional properties which will be mentioned in subsequent weeks.
The video below provides illustrations and visualisations for the ideas of unbiased and consistent estimators:

5



Unbiased and consistent estimators

https://youtu.be/4KQxrXtxnuQ
Duration: 8m42s

The example below, investigates these three properties (range, unbiased and consistent) for a point estimator for thebinomial distribution.

Example 3 (Binomial model with parameter 𝜃, 0 ≤ 𝜃 ≤ 1).

It is assumed that 𝑋 ∼ Bi(𝑛, 𝜃), where 𝑋 is the number of success, 𝑛 is the sample size and 𝜃 is theprobability of success. The proposed point estimator of 𝜃 is 𝑡 (𝑋) = 𝑋/𝑛.
Show that 𝑡 (𝑋) = 𝑋/𝑛 has the same range as 𝜃 and that it is an unbiased and consistent point estimator.

Range :

Since 0 ≤ 𝑋 ≤ 𝑛, 𝑋/𝑛 has the same range as 𝜃.
When 𝑋 = 0, 𝑋/𝑛 = 0 and when 𝑋 = 𝑛, 𝑋/𝑛 = 1. Therefore, (0 ≤ 𝑡 (𝑋) ≤ 1).
Unbiased :

E(𝑋/𝑛) = 1/𝑛{E(𝑋)} = 1
𝑛
(𝑛𝜃)∗ = 𝜃

Consistent :

Var(𝑋/𝑛) = 1
𝑛2 Var(𝑋) = 1

𝑛2 (𝑛𝜃 (1 − 𝜃))∗ = 1
𝑛
(𝜃 (1 − 𝜃))

and so since 0 ≤ 𝜃 ≤ 1, Var(𝑋/𝑛) → 0 as 𝑛→ ∞.

Probability theory - a reminder

For any random variable 𝑋 and any real constant 𝑘 :
E(𝑘𝑋) = 𝑘E(𝑋)

Var(𝑘𝑋) = 𝑘2Var(𝑋).

See the Probability and Stochastic Models or the Probability and Sampling Fundamentals/Sampling Fundamentalscourses for definitions of expectation and variance and associated rules.
*See the probability formula sheet (a copy is included on Moodle with this week’s material) for expectations andvariances of standard distributions.

Task 2.
Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent random variables from a Poi(𝜆) distribution (where 𝜆 ≥ 0is unknown). It is proposed to estimate 𝜆 using the sample mean,
𝑡 (X) = 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖

𝑛
.

Show that 𝑡 (X) has the same range as 𝜆, and that it is an unbiased and consistent estimator of 𝜆.
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Maximum Likelihood Estimation

Motivating ideas

In week 4 we stated that if we adopt a probability model for the variable of interest in the population, this means that,implicitly, we are claiming to know everything about the population apart from the values of the model’s unknownparameters. We referred to this as parametric inference, and in parametric inference the problem is reduced to thenestimating the model parameters.
In the examples used in week 4, and for defining point estimators above, the estimators were intuitive based on thenature of the data and the question of interest, and checking the properties of range, unbiased and consistent, in theinitial section for this week, suggested that they were appropriate point estimators for our population parameters.
However, for a given scenario it is not always obvious what an appropriate estimator for a population parameter maybe in order to use a particular probability distribution to describe the variability in the data.
For example, let’s consider the contexts below:
Suppose for a business model we were interested in predicting the:

• number of customers you would have to call before finding a customer that has experienced a faulty product;• number of people youwould have to poll before finding someonewhowould vote for an independent candidate;• number of tweets you would have to assess before finding one from a fabricated source.
From probability theory, we know that a geometric distribution is a possibility to describe the properties of a randomvariable of the number of trials until (and including) the first failure, with parameter 𝜃 the probability of success. How-ever, unlikewith the binomial or Poisson distribution, it’s not obviouswhat a sensible estimator is for the parameter 𝜃 ofthe geometric distribution i.e. what is an appropriate way to summarise the ‘no. of trials until first failure’ information?
The method of Maximum Likelihood offers us a general approach to obtaining estimators of the parameters in anymodel.
Maximum likelihood estimation is the best known and most widely used method of estimation1. In this approach weare selecting the value of 𝜃 (our parameters) for a chosen probability distribution, for which our given set of observa-tions has maximum probability.
To motivate this let’s consider the following example for the binomial model where we already know that 𝜃 = 𝑋/𝑛 isa sensible extimator:

Example 4.
Suppose we are interested in the number of dentists in the UK that often feel stressed at work. We take arandom sample of the number of dentists in the UK, say 𝑛 = 30, and ask them whether or not they oftenfeel stressed at work. From this sample we get the result that 60% often feel stressed at work.
Take 𝑋 to be the number of dentists who often feel stressed at work (which in this sample is 18), then
𝑋 ∼ Bi(30, 𝜃).

For this example, let’s consider the probability that we would have seen a value of 𝑋 = 18 for different values of 𝜃using the probability mass function of a binomial distribution.

𝜃 = 0.1
𝑝0.1 (18) =

(
30
18

)
(0.1)18 (0.9)12 =< 0.00001

𝜃 = 0.3
𝑝0.3 (18) =

(
30
18

)
(0.3)18 (0.7)12 = 0.0005.

1ordinary least squares is also widely used, see the Predictive Modelling course, but in the first instance is restricted to normally distributed data
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These are all very small probabilities. It is unlikely that a sample of 30 dentists would include as many as 18 that oftenfeel stressed if only 10 or 30% of the population of dentists often felt stressed. So 0.1 and 0.3 are implausible valuesfor 𝜃, given the evidence in the data.
Let’s consider some larger values for 𝜃:

𝜃 = 0.5
𝑝0.5 (18) =

(
30
18

)
(0.5)18 (0.5)12 = 0.081

𝜃 = 0.6
𝑝0.6 (18) =

(
30
18

)
(0.6)18 (0.4)12 = 0.15

𝜃 = 0.7
𝑝0.7 (18) =

(
30
18

)
(0.7)18 (0.3)12 = 0.075.

These are much larger probabilities. It is much more likely that a sample of 30 dentists would include 18 that oftensuffer from stress if 50-70% of the population of dentists often suffer from stress. So these are all plausible values of
𝜃 given the evidence in the data.
We can therefore define our likelihood function 𝐿 (𝜃; x) based on the probability mass function for our data,

𝐿 (𝜃; x) = 𝑝(𝑥).

For the example above if we plot the likelihood function by calculating 𝑝(𝑥) over a range of 𝜃 we get:

In this example, the likelihood function reaches its maximum value at 𝜃 = 0.6. On the basis of the sample data, this isthe most plausible value of 𝜃, i.e. 𝜃 = 𝑋/𝑛 = 18/30 = 0.6. The value of 𝜃 at which the likelihood function reaches itsmaximum is known as the maximum likelihood estimate of 𝜃. In most models the likelihood is based on a product ofseveral terms and this will be formally derived below.

Summary of motivational ideas In maximum likelihood estimation, the key idea is that, given observed data and anassumed probability model, we want to find estimates for the population parameters that maximise the likelihood thatour distribution fits our data,
i.e. if we observe 𝑥, assuming a geometric distribution, what is the best estimate of the parameter 𝜃 for the geometricdistribution to fit the data?
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The method of maximum likelihood

The maximum likelihood estimate (MLE) is the value of 𝜃, where 𝜃 is the population parameter for any probabilitydistribution, which maximises the likelihood function 𝐿 (𝜃; x).
Assuming that a sample of data, 𝑥1, 𝑥2, . . . , 𝑥𝑛 arise from independent replicates of an experiment, then probabilitiesassociated with the individual observations are multiplied together2 to give an overall probability associated with thedata.
In order to find the maximum value of a simple function:

• We first need to find the turning points of the function and this can be done by computing the gradient of afunction at each point through differentiation with respect to the unknown parameters of a function.
• Turning points are found where the first derivative is equal to zero.
• We then need to establish which of the turning points are amaximum. Amaximum turning point can be identifedwhere there is evidence of negative curvature at a turning point i.e. where the second derivative is less than zero3.

Initially, we will introduce likelihood using discrete distributions of binomial and Poisson to illustrate how the processworks, and confirm the intuitive point estimators that we already know from previous examples.

Discrete Distributions

Suppose that the discrete random variable 𝑋𝑖 is observed on the 𝑖th replicate of an experiment and that 𝑋𝑖 has prob-ability mass function 𝑝𝑖 (𝑥𝑖). Then assuming independence, the overall probability of the data is:
𝑃(𝑋1 = 𝑥1 and 𝑋2 = 𝑥2 and . . . and 𝑋𝑛 = 𝑥𝑛)

= 𝑃(𝑋1 = 𝑥1) × 𝑃(𝑋2 = 𝑥2) × . . . 𝑃(𝑋𝑛 = 𝑥𝑛)
= 𝑝1 (𝑥1) × 𝑝2 (𝑥2) × · · · × 𝑝𝑛 (𝑥𝑛).

The likelihood function of the unknown parameter 𝜃, given a sample of data, 𝑥1, 𝑥2, . . . , 𝑥𝑛 is defined as:

𝐿 (𝜃; 𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑝1 (𝑥1) × 𝑝2 (𝑥2) × · · · × 𝑝𝑛 (𝑥𝑛) =
𝑛∏
𝑖=1

𝑝𝑖 (𝑥𝑖).

It is often easier, algebraically, to work with the (natural) logarithm of the likelihood function. This is known as thelog-likelihood function, and is denoted
ℓ(𝜃) = log𝑒{𝐿 (𝜃; x)}.

Since log𝑒(.) is a monotonic function, ℓ(𝜃) reaches its maximum at the same value of 𝜃 as 𝐿 (𝜃; x). This means that themaximum likelihood estimate can be found by maximising either 𝐿 (𝜃; x) or ℓ(𝜃). We will shorten 𝐿 (𝜃; x) to 𝐿 (𝜃).

Example 5 (Binomial model (for one data point 𝑥)).

We considered an example of the binomial distribution in the motivational example of dentists that oftenfeel stressed at work, and visualised the maximum likelihood estimate from the plot of the likelihood.Now let’s work through the full derivation of this. So we have,
Model: 𝑋 ∼ Bi(𝑛, 𝜃)

Data: 𝑥
and we want to find the estimator and hence estimate of 𝜃 which maximises the probability that thebinomial distribution fits our data 𝑥.

2See the Probability and Stochastic Models or the Probability and Sampling Fundamentals/Sampling Fundamentals course for details here.3See the Preliminary Maths course for more details here.
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Likelihood:

The idea which lies behind the principle of likelihood is that 𝑝(𝑥) can be used to indicate the relative plausibility of anyparticular value of 𝜃 to be the true value of 𝜃.
In this example there is only one data point 𝑥 and hence the likelihood is just equal to the probability that 𝑋 = 𝑥:

𝐿 (𝜃) = 𝑝(𝑥),

𝑝(𝑥) can be found from the probability distribution sheet for the binomial distribution, and hence:

𝐿 (𝜃) =
(
𝑛

𝑥

)
𝜃𝑥 (1 − 𝜃)𝑛−𝑥 , 0 ≤ 𝜃 ≤ 1.

Log-likelihood:

Algebraically, it is then more convenient to take the natural log of the likelihood expression:

ℓ(𝜃) = loge

((
𝑛

𝑥

)
𝜃𝑥 (1 − 𝜃)𝑛−𝑥

)
, 0 < 𝜃 < 1

ℓ(𝜃) = loge

(
𝑛

𝑥

)
+ loge (𝜃𝑥) + loge ((1 − 𝜃)𝑛−𝑥) , 0 < 𝜃 < 1

ℓ(𝜃) = 𝐾 + 𝑥 log𝑒 𝜃 + (𝑛 − 𝑥) log𝑒 (1 − 𝜃), 0 < 𝜃 < 1

where 𝐾 is some constant.
The quantity (𝑛

𝑥

) and hence log𝑒
(𝑛
𝑥

) is a known numeric value based on the sample size and observed data value for 𝑥.Therefore, it is often more convenient to simplify this by simply referring to it as a constant 𝐾 .
Assuming that 1 ≤ 𝑥 ≤ 𝑛 − 1, then these functions are maximised at an interior point of the interval [0, 1]. The
maximum can be found by differentiation:

𝑑ℓ

𝑑𝜃
= ℓ′ (𝜃) = 𝑥

𝜃
− 𝑛 − 𝑥

1 − 𝜃 .

Since we are differentiating with respect to 𝜃 and 𝐾 is a known constant (that does not depend on 𝜃), then it disappearsafter differentiation.
To find the turning point set 𝑑ℓ

𝑑𝜃
= ℓ′ (𝜃) = 0.

𝑑ℓ

𝑑𝜃
= ℓ′ (𝜃) = 0

𝑥

𝜃
− 𝑛 − 𝑥

1 − 𝜃 = 0
𝑥

𝜃
=
𝑛 − 𝑥
1 − 𝜃

𝑥(1 − 𝜃) = 𝜃 (𝑛 − 𝑥)
𝑥 − 𝜃𝑥 = 𝜃𝑛 − 𝜃𝑥

𝑥 = 𝜃𝑛

𝜃 =
𝑥

𝑛
.

This means that the log-likelihood has a turning point at 𝜃 = 𝑥
𝑛
. We need to check that this is indeed a localmaximum:

𝑑2ℓ

𝑑𝜃2 = ℓ′′ (𝜃) = − 𝑥

𝜃2 − 𝑛 − 𝑥
(1 − 𝜃)2 .

This second derivative must be less than 0 at all values of 𝜃 in the range (0, 1), since 𝜃2 and (1 − 𝜃)2 are alwaysnon-negative:
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ℓ′′ (𝜃) = −
(
𝑥

𝜃2 + 𝑛 − 𝑥
(1 − 𝜃)2

)
< 0.

This means that the turning point at 𝜃 = 𝑥
𝑛
is indeed a local maximum. So assuming that 1 ≤ 𝑥 ≤ 𝑛 − 1, the maximum

likelihood estimate of 𝜃 in this model is 𝜃𝑀𝐿𝐸 = 𝑥
𝑛
. Notice that this is the natural estimator we discussed earlier.

Mathematical reminders

You will see in the example above that there are a few mathematical rules that are very useful. Here is a reminder ofthe key results that we’ll use throughout the course:
log rules:

• log𝑒 (𝐴𝐵) = log𝑒 (𝐴) + log𝑒 (𝐵)

• log𝑒 (𝐴/𝐵) = log𝑒 (𝐴) − log𝑒 (𝐵)

• log𝑒 (𝐴𝑛) = 𝑛 log𝑒 (𝐴)

differentiation:4

𝑑

𝑑𝜃
log𝑒 𝜃 =

1
𝜃

𝑑

𝑑𝜃
log𝑒 𝑓 (𝜃) =

𝑓 ′ (𝜃)
𝑓 (𝜃)

Now let’s find the maximum likelihood estimator for the Poisson distribution and in particular apply the results forexample 1, to obtain the maximum likelihood estimate.
The video talks through the general approach for maximum likelihood and derives the steps for obtaining themaximumlikelihood estimator for the Poisson distribution in detail:

Maximum likelihood estimation with a Poisson example

https://youtu.be/7cKJM-9FhTA
Duration: 12m02s

Example 6 (Poisson model).

Model: 𝑋1, 𝑋2, . . . , 𝑋𝑛 independent with each 𝑋𝑖 ∼ Poi(𝜆)

Data: 𝑥1, 𝑥2, . . . , 𝑥𝑛

Likelihood:

𝐿 (𝜆) =
𝑛∏
𝑖=1

𝑝𝑖 (𝑥𝑖)

4See the definition of the chain rule from the Preliminary Maths course.
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𝐿 (𝜆) =
𝑛∏
𝑖=1

𝜆𝑥𝑖 𝑒−𝜆

𝑥𝑖!
=
𝜆
∑𝑛

𝑖=1 𝑥𝑖 𝑒−𝑛𝜆∏𝑛
𝑖=1 𝑥𝑖!

, 𝜆 ≥ 0

Log-likelihood:

ℓ(𝜆) =
𝑛∑︁
𝑖=1

𝑥𝑖 log𝑒 𝜆 − 𝑛𝜆 + 𝐾, 𝜆 ≥ 0

for a constant 𝐾 .
Differentiate wrt 𝜆:

ℓ′ (𝜆) =
∑𝑛

𝑖=1 𝑥𝑖

𝜆
− 𝑛,

Solve for 𝜆:

ℓ′ (𝜆) = 0 when 𝜆 =

∑𝑛
𝑖=1 𝑥𝑖

𝑛
= 𝑥,

Second derivative:

ℓ′′ (𝜆) = −
∑𝑛

𝑖=1 𝑥𝑖

𝜆2 ,

and this is < 0 for all 𝜆 > 0.
If we apply the above results to Example 1 on car accidents we see that 𝜆𝑀𝐿𝐸 = 𝑥 = 38/20 = 1.9. This result is alsodisplayed in the figure below where it can be seen that the maximum of the likelihood function occurs at 𝜆 = 1.9.

Likelihood in R

Let’s look at plots of the likelihood and log-likelihood function in R for this example to visualise the results:
## create a plausible sequence of values for the population parameter lambda
lambda = seq(1,3,length=1000)

## the data - number of accidents in each month
x <- c(2,2,1,1,0,4,2,1,2,1,1,1,3,1,2,2,3,2,3,4)

## the sample size
n <- length(x)

## the likelihood function
lik <- (lambdaˆ(sum(x))*exp(-n*lambda))/prod(factorial(x))

## plotting the likelihood function, with a line added at the MLE

par(mfrow=c(1,2))
plot(lambda, lik, ylab="likelihood", xlab="lambda", type="l", lwd=3, cex.lab=1.5)
abline(v=mean(x), col="yellow", lwd=3)

## the log-likelihood function
loglik <- sum(x)*log(lambda)-n*lambda

## plotting the log-likelihood function, with a line added at the MLE
plot(lambda,loglik, ylab="log-likelihood", type="l", lwd=3, cex.lab=1.5)
abline(v=mean(x), col="yellow", lwd=3)
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Task 3.
Now let’s return to our example for the geometric distribution. Suppose that you are interested in pre-dicting the number of customers you would have to call before finding a customer that has experienceda faulty product, and to assess this data 𝑥1, . . . , 𝑥𝑛 have been collected for each of 𝑛 weeks, where 𝑥𝑖 isthe number of customers called before finding a customer with a faulty product in week 𝑖.
Suppose that 𝑥1, 𝑥2 . . . , 𝑥𝑛 are observations of the independent random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 respec-tively. Obtain the maximum likelihood estimator of the unknown parameter 𝜃 in 𝑋𝑖 ∼ Geo(𝜃) where
0 < 𝜃 < 1.

Learning outcomes for week 5

By the end of week 5, you should be able to:
• write down and justify criteria required of ‘good’ point estimators;• check whether or not a proposed estimator within a stated statistical model has the same range as the parameterof interest, is unbiased and consistent;• apply the principle of maximum likelihood to obtain point estimators (and hence point estimates) of parametersin one-parameter discrete statistical models.

Review exercises, selected video solutions and written answers to all tasks/review exercises are provided overleaf.
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Review exercises

Task 4.
Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent U(0, 𝜃) random variables, for unknown 𝜃 > 0. It is proposedto estimate 𝜃 by 𝑡 (X) = 2𝑋 . By using the fact that a U(0, 𝜃) random variable has E(𝑋𝑖) = 1

2 𝜃 and Var(𝑋𝑖) =
1

12 𝜃
2. Show that 𝑡 (X) is an unbiased and consistent point estimator of 𝜃.

Show that 𝑡 (X) is an unbiased and consistent estimator of 𝜃.

Task 5.
Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent observations from a N(𝜇, 𝜎2) distribution (where 𝜇 is un-known and 𝜎2 is known). It is proposed to estimate 𝜇 using the sample mean, 𝑡 (X) = 𝑋 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 .

Show that 𝑡 (X) has the same range as 𝜇, and that it is an unbiased and consistent estimator of 𝜇.

Task 6.
Suppose that 𝑥1, 𝑥2, . . . , 𝑥𝑛 are observations of the independent random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 respec-tively. Obtain the maximum likelihood estimator of the unknown parameter 𝜃 for 𝑋1, 𝑋2, . . . , 𝑋𝑛, where
𝑋𝑖 ∼ Bi(𝑚𝑖; 𝜃), 0 < 𝜃 < 1 and 𝑚1, 𝑚2, . . . , 𝑚𝑛 are known positive integers. (Hint: 𝐿 (𝜃) = ∏𝑛

𝑖=1 𝑝𝑖 (𝑥𝑖)).

Task 7.
A Geiger counter is a device which is used to measure radioactivity. In order to check that the deviceis calibrated correctly, a measurement can be taken from a source of known radioactive strength. Thecounts recorded by the Geiger counter over 200 one second intervals were recorded and these can berepresented by the random variables 𝑋1, . . . , 𝑋200.
For this particular radioactive source, if the Geiger counter is functioning correctly then the mean countin a one second interval should be 20.
Assume that the counts 𝑋1, . . . , 𝑋200 are independent and each follow a Poi(𝜃) distribution, and that thesum of the observed counts was ∑200

𝑖=1 𝑥𝑖 = 3654.
Write down the log-likelihood function for 𝜃. Use this to find the maximum likelihood estimate of 𝜃 interms of the observed values 𝑥1, . . . , 𝑥𝑛, making sure to check that you have, indeed, found a maximumlikelihood estimate.

14



Answers to tasks

Answer to Task 1. PTC example (example 4 from week 4):
Point estimator = 𝜃 = 𝑋/𝑛, where 𝑋 is the number of people that could taste PTC in the sample and 𝑛 is the samplesize. The point estimate is 𝜃 = 0.732.
IQ example (example 1 from week 4):
Point estimator = 𝜇 = 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖

𝑛
, the sample mean of the IQ data. The point estimate is the numerical value of thiswhich was 𝜇 = 92.2.

Answer to Task 2. It is assumed that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are all independently distributed, with each 𝑋𝑖 ∼ Poi(𝜆). Thismeans, in particular, that E(𝑋𝑖) = 𝜆 and Var(𝑋𝑖) = 𝜆. The parameter 𝜆 is restricted to be non-negative. The proposedestimator of 𝜆 is 𝑡 (X) = 𝑋 .
Range : Each 𝑋𝑖 is a count (0,1,. . .) and so 𝑋 must be non-negative, like 𝜆 itself.
Unbiased : E(𝑋) = E( 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖) = E(

∑𝑛
𝑖=1

𝑋𝑖

𝑛
) = ∑𝑛

𝑖=1 ( 1
𝑛
E(𝑋𝑖))∗ =

∑𝑛
𝑖=1

1
𝑛
𝜆 = 𝑛. 1

𝑛
𝜆 = 𝜆

Consistent : Var(𝑋) = Var( 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖) = Var(∑𝑛

𝑖=1
𝑋𝑖

𝑛
) = ∑𝑛

𝑖=1 ( 1
𝑛2 Var(𝑋𝑖))∗ =

∑𝑛
𝑖=1

1
𝑛2𝜆 = 𝑛. 1

𝑛2𝜆 = 𝜆
𝑛

and so Var(𝑋) → 0 as 𝑛→ ∞

*See the probability formula sheet (a copy is included on Moodle/Teams with this week’s material) for expectationsand variances of standard distributions.
Answer to Task 3.

𝑝(𝑥𝑖) = 𝜃𝑥𝑖−1 (1 − 𝜃), 𝑥𝑖 = 1, 2, . . .

𝐿 (𝜃; 𝑥1, . . . , 𝑥𝑛) =
𝑛∏
𝑖=

𝜃𝑥𝑖−1 (1 − 𝜃), 0 < 𝜃 < 1

ℓ(𝜃) =
𝑛∑︁
𝑖=1

(𝑥𝑖 − 1) log𝑒 (𝜃) + log𝑒 (1 − 𝜃)𝑛

= log𝑒 (𝜃) (
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛) + 𝑛 log𝑒 (1 − 𝜃)

ℓ′ (𝜃) = 1
𝜃
(

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛) −
𝑛

1 − 𝜃

So ℓ′ (𝜃) = 0 when,

(1 − 𝜃) (
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛) = 𝑛𝜃

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛 = 𝜃
𝑛∑︁
𝑖=1

𝑥𝑖

𝜃 =

∑𝑛
𝑖=1 𝑥𝑖 − 𝑛∑𝑛

𝑖=1 𝑥𝑖

So ℓ(𝜃) has a turning point at 𝜃 = ∑𝑛
𝑖=1 𝑥𝑖−𝑛∑𝑛
𝑖=1 𝑥𝑖

.

Now,

ℓ′′ (𝜃) = − 1
𝜃2 (

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛) −
𝑛

(1 − 𝜃)2 < 0
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for all 𝜃 in the range 0 to 1.
So the turning point at 𝜃 = ∑𝑛

𝑖=1 𝑥𝑖−𝑛∑𝑛
𝑖=1 𝑥𝑖

is a local maximum and 𝜃𝑀𝐿𝐸 =

∑𝑛
𝑖=1 𝑥𝑖−𝑛∑𝑛
𝑖=1 𝑥𝑖

Answer to Task 4. Illustrating properties of unbiased and consistent:
Unbiased : E(2𝑋) = E( 2

𝑛

∑𝑛
𝑖=1 𝑋𝑖) = E(

∑𝑛
𝑖=1

2𝑋𝑖

𝑛
) = ∑𝑛

𝑖=1 ( 2
𝑛
E(𝑋𝑖)) =

∑𝑛
𝑖=1

2
𝑛

𝜃
2 = 𝑛. 1

𝑛
𝜃 = 𝜃

Consistent : Var(2𝑋) = Var( 2
𝑛

∑𝑛
𝑖=1 𝑋𝑖) = Var(∑𝑛

𝑖=1
2𝑋𝑖

𝑛
) = ∑𝑛

𝑖=1 ( 4
𝑛2 Var(𝑋𝑖)) =

∑𝑛
𝑖=1

4
𝑛2

𝜃2

12 = 𝜃2

3𝑛

and so var(𝑋) → 0 as 𝑛→ ∞

Answer to Task 5. Illustrating properties of unbiased and consistent:
It is assumed that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are all independently distributed, with each 𝑋𝑖 ∼ N(𝜇, 𝜎2). This means, in particular,that E(𝑋𝑖) = 𝜇 and Var(𝑋𝑖) = 𝜎. The proposed estimator of 𝜇 is 𝑡 (X) = 𝑋 .
Range : Clearly −∞ < 𝑋 < ∞

Unbiased : E(𝑋) = E( 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖) = E(

∑𝑛
𝑖=1

𝑋𝑖

𝑛
) = ∑𝑛

𝑖=1 ( 1
𝑛
E(𝑋𝑖)) =

∑𝑛
𝑖=1

1
𝑛
𝜇 = 𝑛. 1

𝑛
𝜇 = 𝜇

Consistent : Var(𝑋) = Var( 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖) = Var(∑𝑛

𝑖=1
𝑋𝑖

𝑛
) =

∑𝑛
𝑖=1 ( 1

𝑛2 Var(𝑋𝑖)) =
∑𝑛

𝑖=1
1
𝑛2𝜎

2 = 𝑛. 1
𝑛2𝜎

2 = 𝜎2

𝑛
and so

Var(𝑋) → 0 as 𝑛→ ∞

Video model answers

https://youtu.be/qyrCzLZzuk4
Duration: 4m55s

Answer to Task 6.
𝑝(𝑥𝑖) =

(
𝑚𝑖

𝑥𝑖

)
𝜃𝑥𝑖 (1 − 𝜃)𝑚𝑖−𝑥𝑖 , 𝑥𝑖 = 0, 1, . . . , 𝑚𝑖

𝐿 (𝜃; 𝑥1, . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

(
𝑚𝑖

𝑥𝑖

)
𝜃𝑥𝑖 (1 − 𝜃)𝑚𝑖−𝑥𝑖 , 0 < 𝜃 < 1

ℓ(𝜃) = 𝐾 +
𝑛∑︁
𝑖=1

𝑥𝑖 log𝑒 (𝜃) +
𝑛∑︁
𝑖=1

(𝑚𝑖 − 𝑥𝑖) log𝑒 (1 − 𝜃)

= 𝐾 + log𝑒 (𝜃)
𝑛∑︁
𝑖=1

𝑥𝑖 + log𝑒 (1 − 𝜃).
(
𝑀 −

𝑛∑︁
𝑖=1

𝑥𝑖

)
where 𝑀 =

∑𝑛
𝑖=1 𝑚𝑖 is the total number of ‘trials’ and ∑𝑛

𝑖=1 𝑥𝑖 is the total number of ‘successes’.

ℓ′ (𝜃) = 1
𝜃

𝑛∑︁
𝑖=1

𝑥𝑖 −
1

1 − 𝜃

(
𝑀 −

𝑛∑︁
𝑖=1

𝑥𝑖

)
= 0

(1 − 𝜃)
𝑛∑︁
𝑖=1

𝑥𝑖 = 𝜃

(
𝑀 −

𝑛∑︁
𝑖=1

𝑥𝑖

)
𝑛∑︁
𝑖=1

𝑥𝑖 = 𝜃𝑀

𝜃 =
1
𝑀

𝑛∑︁
𝑖=1

𝑥𝑖
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So ℓ(𝜃) has a turning point at 𝜃 = 1
𝑀

∑𝑛
𝑖=1 𝑥𝑖 .

Now,

ℓ′′ (𝜃) = − 1
𝜃2

𝑛∑︁
𝑖=1

𝑥𝑖 −
1

(1 − 𝜃)2

(
𝑀 −

𝑛∑︁
𝑖=1

𝑥𝑖

)
< 0

for all 𝜃 in the range 0 to 1.
So the turning point at 𝜃 = 1

𝑀

∑𝑛
𝑖=1 𝑥𝑖 is a local maximum and 𝜃𝑀𝐿𝐸 = 1

𝑀

∑𝑛
𝑖=1 𝑥𝑖 .

Video model answers

https://youtu.be/Zx3XuQ00mWs
Duration: 9m25s

Answer to Task 7. The likelihood function is
𝐿 (𝜃) = ∏𝑛

𝑖=1 𝜃
𝑥𝑖 𝑒−𝜃/𝑥𝑖! = 𝜃

∑
𝑖 𝑥𝑖 𝑒−𝑛𝜃/∏𝑖 𝑥𝑖!

The log-likelihood function is
ℓ(𝜃) = (∑𝑛

𝑖=1 𝑥𝑖) log𝑒 𝜃 − 𝑛𝜃 + 𝐾

The derivatives are
ℓ′ (𝜃) = (∑𝑛

𝑖=1 𝑥𝑖)/𝜃 − 𝑛

ℓ′ (𝜃) = (∑𝑛
𝑖=1 𝑥𝑖)/𝜃 − 𝑛 = 0,

∑
𝑥𝑖
𝜃

= 𝑛, 𝜃 =
∑

𝑥𝑖
𝑛

= 𝑥

ℓ′′ (𝜃) = −(∑𝑛
𝑖=1 𝑥𝑖)/𝜃2

The first derivative equals 0 when 𝜃 = 𝑥.
The fact that the second derivative is negative everywhere establishes that this is the MLE.

𝜃𝑀𝐿𝐸 = 3654/200 = 18.27
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