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Functions of more than one variable
In Unit 1 we defined a function, 𝑓 (𝑥), from a set 𝐴 to another set 𝐵 to be a rule that assigns for each 𝑥 ∈ 𝐴 a uniqueelement 𝑓 (𝑥) ∈ 𝐵. In that case the output 𝑓 (𝑥) depended only on one input; the value of 𝑥.
However, we can also have two inputs (or more) to a function, each of which can be chosen independently. As before,the function can then be used to produce the output. Note that even though we can have two or more inputs, we willstill assume that there is just a single output. These inputs can be represented by any letter (e.g. 𝑥, 𝑦, 𝑧, . . .) and theoutput can either be represented by a letter (one that we have not used for any of the inputs) or as a function of theinput (e.g. 𝑓 (𝑥, 𝑦, 𝑧)).
As an important special case, a function of two variables is a rule that produces a single output when specific valuesof the two variables are chosen. Similarly to the definition of Unit 1; a function, 𝑓 (𝑥, 𝑦), from a set 𝐴 to another set 𝐵defines a rule that assigns for each pair (𝑥, 𝑦) ∈ 𝐴 a unique element 𝑓 (𝑥, 𝑦) ∈ 𝐵.

Example 1 (Function of two variables).

A function 𝑓 (𝑥, 𝑦) is defined as 𝑓 (𝑥, 𝑦) =
√︁
𝑥2 + 𝑦2 + 3𝑥.

If we want to calculate its value for 𝑥 = 3 and 𝑦 = 2 we just need to find 𝑓 (3, 2) =
√

32 + 22 + 3 · 3 =
√

22.
Similarly, if we want to calculate its value for 𝑥 = 2 and 𝑦 = 3 we need to find 𝑓 (2, 3) =

√
22 + 32 + 3 · 2 =√

19.

Example 2 (Graph of a function of two variables).

Let’s assume that we now have a function 𝑓 (𝑥, 𝑦) that has two inputs 𝑥, 𝑦:

𝑓 (𝑥, 𝑦) = −𝑥2

2 + 𝑥𝑦2.

The figure below shows its graph for −2 < 𝑥 < 2 and −2 < 𝑦 < 2.
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Because 𝑓 is a function of 𝑥 and 𝑦 we can now ask questions like “How does 𝑓 (𝑥, 𝑦) change as a functionof 𝑥 and 𝑦?” or “What happens to the function when 𝑥 increases and 𝑦 takes small values?”. Would ouranswer be the same even if 𝑦 was taking different values?
Another graphical technique for representing a 3-dimensional surface is by plotting constant f(x,y) slices,called contours, on a 2-dimensional format. That is, given a value for f(x,y), lines are drawn for connecting
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the (x,y) coordinates where that f(x,y) value occurs. Figure 2 shows the contour plot of 𝑓 (𝑥, 𝑦).
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Can you see the connection between the contour plot and the graph of the function (in the previouspage)?
Focusing on the left half of the contour plot, we can see that we get exactly the same values at the topand the bottom of the contour plot (they both have the dark blue colour).
(Hint: What happens if I find the values of 𝑓 (𝑥, 𝑦) for the two pairs (𝑥 = −2, 𝑦 = −2) and (𝑥 = −2, 𝑦 = 2)respectively?)
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Partial differentiation
Introduction to partial differentiation

In Unit 2 we showed how one can differentiate a function of a single variable and compute the derivative of such afunction. This gave us information about the slope of the graph of the function at different points. If 𝑥 was the inputand 𝑓 (𝑥) (or 𝑦) was the output, we used the notation 𝑓 ′(𝑥) or d𝑦
d𝑥 to obtain the derivative. As a reminder, the latterway would be read as “the derivative of 𝑦 with respect to the variable 𝑥”.

Consider now that we have 𝑓 (𝑥, 𝑦) (or 𝑧) as the function that depends on the two variables 𝑥 and 𝑦. Thus, 𝑧 can bedifferentiated with respect to 𝑥 and produce one derivative while it can also be differentiated with respect to 𝑦 andproduce another (different) derivative. The derivative with respect to 𝑥 gives us the slope in the 𝑥-direction, whereasthe derivative with respect to 𝑦 gives us the slope in the 𝑦-direction. So, for functions of two variables we can nolonger talk about a single (unique) derivative of 𝑧.
From now on, when we differentiate a function of two variables, we will refer to this process as partial differentiation.Instead of using the letter d in d𝑦

d𝑥 we will use a curly d instead and write is as 𝜕. As an example, when we differentiate
𝑧 with respect to 𝑥 (or 𝑦), we will denote the resulting partial derivative as 𝜕𝑧

𝜕𝑥
(or 𝜕𝑧

𝜕𝑦
). This is just a different notation,

(almost) nothing else changes.
The rules for partial differentiation are the same as when we differentiate a function of a single input, with just oneaddition. When we differentiate with respect to a specific variable (let’s say 𝑥) we treat all other variables as they wereconstants (i.e. numbers). Let’s look at an example.

Example 3 (Partial differentiation (1/2)).

Let’s assume we have the function
𝑧 = 𝑓 (𝑥, 𝑦) = 15𝑥2 + 𝑦.

If we differentiate with respect to 𝑥 we should consider any occurence of all other variables as thoughthey were constants. In this case, we only have one more variable 𝑦 that we will consider as a constant.
Thus,

𝜕𝑧

𝜕𝑥
= 30𝑥

since the derivative of 15𝑥2 is 30𝑥 while the derivative of the constant 𝑦 is 0. If it helps, imagine that 𝑦had a specific value (𝑦 = 20) and the derivative of any number is 0.
If we differentiate with respect to 𝑦 we should consider any occurence of all other variables (namely 𝑥) asthough they were constants.

𝜕𝑧

𝜕𝑦
= 1

since the derivative of 15𝑥2 with respect to 𝑦 is 0 and the derivative of 𝑦 with respect to 𝑦 is 1.

Example 4 (Partial differentiation (2/2)).

Let’s now assume we have the function
𝑧 = 𝑓 (𝑥, 𝑦) = 𝑦𝑥𝑒2𝑥

and want to find the partial derivatives.
We start with the partial derivative with respect to 𝑥. For this we have to treat 𝑦 as a constant and usethe product rule.
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𝜕𝑧

𝜕𝑥
=

𝜕

𝜕𝑥
𝑦𝑥𝑒2𝑥

= 𝑦
𝜕

𝜕𝑥
𝑥𝑒2𝑥

= 𝑦(1 × 𝑒2𝑥 + 𝑥 × 2𝑒2𝑥) = 𝑒2𝑥𝑦(1 + 2𝑥)

Note that we have used the product rule to differentiate 𝑥𝑒2𝑥 with respect to 𝑥.
The partial derivative with respect to 𝑦 is a lot simpler to calculate.

𝜕𝑧

𝜕𝑦
=

𝜕

𝜕𝑦
𝑦𝑥𝑒2𝑥

= 𝑥𝑒2𝑥 𝜕

𝜕𝑦
𝑦

= 𝑥𝑒2𝑥 × 1 = 𝑥𝑒2𝑥

Sometimes, we arrange the partial derivatives into a vector, called the gradient of the function. It is often denoted as
𝑓 ′(𝑥, 𝑦), ∇ 𝑓 (𝑥, 𝑦), or d

d(𝑥,𝑦) .

𝑓 ′(𝑥, 𝑦) = ∇ 𝑓 (𝑥, 𝑦) = d
d(𝑥, 𝑦) 𝑓 (𝑥, 𝑦) =

[
𝜕
𝜕𝑥

𝑓 (𝑥, 𝑦)
𝜕
𝜕𝑦

𝑓 (𝑥, 𝑦)

]
Higher-order derivatives

In the same way that a function of one variable has a second derivative (which is found by differentiating the firstderivative), so too does a function of two variables. The second (order) partial derivatives are found by differentiatingthe first (order) partial derivatives. We can differentiate either of the first partial derivatives with respect to 𝑥 or withrespect to 𝑦 to obtain various second partial derivatives.
• Differentiating 𝜕𝑧

𝜕𝑥
with respect to 𝑥 produces 𝜕2𝑧

𝜕𝑥2 = 𝜕
𝜕𝑥

( 𝜕𝑧
𝜕𝑥

).
• Differentiating 𝜕𝑧

𝜕𝑥
with respect to 𝑦 produces 𝜕2𝑧

𝜕𝑦𝜕𝑥
= 𝜕

𝜕𝑦
( 𝜕𝑧
𝜕𝑥

).
• Differentiating 𝜕𝑧

𝜕𝑦
with respect to 𝑥 produces 𝜕2𝑧

𝜕𝑥𝜕𝑦
= 𝜕

𝜕𝑥
( 𝜕𝑧
𝜕𝑦

).
• Differentiating 𝜕𝑧

𝜕𝑦
with respect to 𝑦 produces 𝜕2𝑧

𝜕𝑦2 = 𝜕
𝜕𝑦

( 𝜕𝑧
𝜕𝑦

).
In most circumstances (if the corresponding derivatives are continuous) the order of differentiation doesn’t matter, inwhich case

𝜕2𝑧

𝜕𝑦𝜕𝑥
=

𝜕2𝑧

𝜕𝑥𝜕𝑦
.

The second derivatives are often arranged as a matrix, called the Hessian:[
𝜕2𝑧
𝜕𝑥2

𝜕2𝑧
𝜕𝑥𝜕𝑦

𝜕2𝑧
𝜕𝑦𝜕𝑥

𝜕2𝑧
𝜕𝑦2

]

Example 5 (Computing higher-order derivatives).

Let’s assume we have the previous function 𝑓 (𝑥, 𝑦) = 15𝑥2 + 𝑦 and want to find the second partial deriva-tives.
Let’s start with 𝜕2𝑧

𝜕𝑥2 . We have already shown that 𝜕𝑧
𝜕𝑥

= 30𝑥. If we differentiate again with respect to 𝑥 weobtain 30. In more formal notation,
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𝜕2𝑧

𝜕𝑥2 =
𝜕

𝜕𝑥

𝜕

𝜕𝑥
(15𝑥2 + 𝑦)︸           ︷︷           ︸
=30𝑥

=
𝜕

𝜕𝑥
(30𝑥) = 30

Let’s turn to 𝜕2𝑧
𝜕𝑦𝜕𝑥

. Derivatives are evaluated right-to-left, so we first have to differentiate with respect to
𝑥, just like before. This gave 𝜕𝑧

𝜕𝑥
= 30𝑥. Now we have to take the derivative with respect to 𝑦. Given that

there is no 𝑦 in 30𝑥, the derivative with respect to 𝑦 is 0. 𝜕𝑧
𝜕𝑥

= 30𝑥.
𝜕2𝑧

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦

𝜕

𝜕𝑥
(15𝑥2 + 𝑦︸          ︷︷          ︸)=30𝑥 =

𝜕

𝜕𝑦
(30𝑥) = 0

Let’s turn to 𝜕2𝑧
𝜕𝑥𝜕𝑦

, so we now swap the order of taking derivatives. We differentiate with respect to 𝑦 first,
giving 𝜕𝑧

𝜕𝑦
= 1, and differentiate the result with respect to 𝑥. As there is no 𝑥 in the constant expression 1,the derivative is 0. More formally,

𝜕2𝑧

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥

𝜕

𝜕𝑦
(15𝑥2 + 𝑦︸          ︷︷          ︸)=1 =

𝜕

𝜕𝑦
(1) = 0

We can see that, as expected, this is the same as
𝜕2𝑧

𝜕𝑦𝜕𝑥

.
Finally,

𝜕2𝑧

𝜕𝑦2 =
𝜕

𝜕𝑦

𝜕

𝜕𝑦
(15𝑥2 + 𝑦)︸           ︷︷           ︸

=1

=
𝜕

𝜕𝑦
(1) = 0.

Hence, the Hessian is [
𝜕2𝑧
𝜕𝑥2

𝜕2𝑧
𝜕𝑥𝜕𝑦

𝜕2𝑧
𝜕𝑦𝜕𝑥

𝜕2𝑧
𝜕𝑦2

]
=

[
30 0
0 0

]

Tasks

Task 1.
In each of the following cases, calculate 𝜕𝑧

𝜕𝑥
and 𝜕𝑧

𝜕𝑦

(a) 𝑧 = 5𝑥 + 12𝑦(b) 𝑧 = 9 − 3𝑦4 + 12𝑥2

(c) 𝑧 = 10
(
𝑥 + 𝑦 + 5

)
(d) 𝑧 = 9𝑥2𝑦(e) 𝑧 = −9𝑦𝑥
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Task 2.
If 𝑧 = 11𝑥 + 2𝑦2, evaluate 𝜕𝑧

𝜕𝑥
and 𝜕𝑧

𝜕𝑦
at the point (4,−3).

Task 3.
Calculate 𝜕𝑧

𝜕𝑥
and 𝜕𝑧

𝜕𝑦

(a) 𝑧 = 𝑒𝑥𝑒𝑦(b) 𝑧 = 𝑒𝑥𝑦(c) 𝑧 = 𝑒5𝑥

(d) 𝑧 = 𝑒2𝑦

Task 4.
In each of the following cases, calculate 𝜕𝑧

𝜕𝑥
and 𝜕𝑧

𝜕𝑦
:

(a) 𝑧 = 𝑦𝑥𝑒𝑥(b) 𝑧 = 3𝑥𝑦3𝑒𝑥(c) 𝑧 = 𝑥 ln{𝑥𝑦}(d) 𝑧 = 1
𝑥2+𝑦2(e) 𝑧 = 𝑥
𝑥2+𝑦2

Task 5.
Find all the second partial derivatives in each of the following cases:

(a) 𝑧 = 8𝑥 + 2𝑦 + 11(b) 𝑧 = 10𝑦2𝑥 + 2(c) 𝑧 = −2𝑥4𝑦2

(d) 𝑧 = 8𝑒𝑥𝑦(e) 𝑧 = 1
𝑥(f) 𝑧 =
𝑦

𝑥(g) 𝑧 = 𝑥
𝑦

Self-help

Partial derivatives, introduction (Khan Academy video)
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivatives/v/partial-derivatives-introduction

Examples of partial derivatives (Part I)
http://personal.maths.surrey.ac.uk/st/S.Zelik/teach/calculus/partial_derivatives.pdf

Examples of partial derivatives (Part II)
http://tutorial.math.lamar.edu/Classes/CalcIII/PartialDerivatives.aspx
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Stationary points of a function of two variables
Differentiation and stationary points

In Unit 2 we used differentiation to find the maximum and minimum values of a function of a single variable. You mayask yourselves “Is there a similar procedure for functions of two variables?” There is.
To locate stationary points in a function of 2 variables we have to set the first partial derivatives 𝜕𝑧

𝜕𝑥
and 𝜕𝑧

𝜕𝑦
equal tozero and find the values of 𝑥 and 𝑦 that satisfy this.

Example 6 (Finding stationary points of 𝑓 (𝑥, 𝑦) = −𝑥2/2 + 𝑥𝑦2).

Let’s go back to the function 𝑓 (𝑥, 𝑦) = − 𝑥2

2 + 𝑥𝑦2 that we were looking at earlier. The first order partial
derivatives are 𝜕𝑧

𝜕𝑥
= −𝑥 + 𝑦2 and 𝜕𝑧

𝜕𝑦
= 2𝑥𝑦. We now need to find the values of 𝑥 and 𝑦 for which bothpartial derivatives are zero.

Setting the partial derivative with respect to 𝑥 to zero yields 𝑥 = 𝑦2. We can now plug this into the
derivative with respect to 𝑦 (i.e. replace every occurrence of 𝑥 by 𝑦2), which yields 𝜕𝑧

𝜕𝑦

���
𝑥=𝑦2

= 2𝑦3. Setting
this to zero gives 𝑦 = 0. Then 𝑥 = 𝑦2 = 0. Thus the only stationary point of the function is at 𝑥 = 0 and
𝑦 = 0.
The value of the function at that stationary point is the 𝑧 coordinate and is obtained using 𝑧 = −02

2 +0 ·02 =

0. The graph of the function along with the stationary point 𝐴 can be seen in the figure below.
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Distinguishing between stationary points

So far, we have seen how to find the stationary points of a function but not how to distinguish between them. In orderto do that we have to look at the second order derivatives.
Specifically, if we want to find the (local) maximum or (local) minimum values in a function of two variables we can:

1. locate the position of stationary points, let’s say 𝑥1, 𝑦1, by looking for points where 𝜕𝑧
𝜕𝑥

and 𝜕𝑧
𝜕𝑦

are equal to zero,and
2. calculate the expression (

𝜕2𝑧
𝜕𝑥2

) (
𝜕2𝑧
𝜕𝑦2

)
−
(

𝜕2𝑧
𝜕𝑥𝜕𝑦

)2 at the stationary points 𝑥1, 𝑦1.
If the expression is:

• positive and 𝜕2𝑧
𝜕𝑥2 is positive we have a (local) minimum point,

• positive and 𝜕2𝑧
𝜕𝑥2 is negative we have a (local) maximum point,

• negative then we have what is known as a saddle point (a point that the slope is zero but its neither a minimumnor a maximum),
• zero the test is inconclusive and we need further tests to decide whether it is a minimum or a maximum.
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Example 7 (Finding stationary points of 𝑓 (𝑥, 𝑦) = −𝑥2/2 + 𝑥𝑦2).

Let’s determine whether the stationary point from example 6 is a (local) minimum, maximum or saddlepoint. We found the first partial derivatives in example 6.
𝜕𝑧

𝜕𝑥
= −𝑥 + 𝑦2 𝜕𝑧

𝜕𝑦
= 2𝑥𝑦

The second derivatives are
𝜕2𝑧

𝜕𝑥2 =
𝜕

𝜕𝑥

(
−𝑥 + 𝑦2

)
= −1 𝜕2𝑧

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦

(
−𝑥 + 𝑦2

)
= 2𝑦 𝜕2𝑧

𝜕𝑦2 =
𝜕

𝜕𝑦
(2𝑥𝑦) = 2𝑥

We now need to evaluate(
𝜕2𝑧

𝜕𝑥2

) (
𝜕2𝑧

𝜕𝑦2

)
−
(
𝜕2𝑧

𝜕𝑥𝜕𝑦

)2
= −1 × 2𝑥 − (2𝑦)2 = −2𝑥 − 4𝑦2

at 𝑥 = 0 and 𝑦 = 0, for which the quantity is 0. Our test is hence inconclusive.
From the figure in example 6 we can however see that it is a saddle point. (To see this from the derivativeswe would have to take third-order partial derivatives).

Tasks

Task 6.
Locate the stationary points (and distinguish between them) of the following functions:

(a) 𝑧 = 3𝑥𝑦 + 𝑥 + 𝑦(b) 𝑧 = 𝑥2 + 𝑦2 − 3𝑦(c) 𝑧 = 𝑥2 + 𝑦2 − 3𝑥𝑦(d) 𝑧 = 1
𝑥
+ 1

𝑦
− 3

𝑥𝑦(e) 𝑧 = −9𝑦𝑥

Task 7.
Determine the stationary points of 𝑓 (𝑥, 𝑦) = 2𝑥2 + 3𝑦2 + 5𝑥 + 12𝑦 + 19.

Task 8.
Calculate 𝜕𝑧

𝜕𝑥
when

(a) 𝑧 =
𝑦

𝑥2 − 𝑥
𝑦2

(b) 𝑧 = 𝑒𝑥
2−4𝑥𝑦

(c) 𝑧 =
𝑥2−3𝑦2

𝑥2+𝑦2

Self-Help

Local maximum and minimum values for a function of two variables (YouTube video)
https://www.youtube.com/watch?v=Hm5QnuDjNmY
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Finding local maximums/minimums - second derivative test (YouTube video)
https://www.youtube.com/watch?v=QtXCIxB6kW8

Finding stationary points on functions of two variables (Part I)
http://personal.maths.surrey.ac.uk/st/S.Zelik/teach/calculus/max_min_2var.pdf

Finding stationary points on functions of two variables (Part II)
https://archive.uea.ac.uk/jtm/14/dg14p10.pdf
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Answers to tasks
Answer to Task 1.

Video model answers for part (a)

https://youtu.be/5cMIIzLKC6M
Duration: 1m12s

Video model answers for part (d)

https://youtu.be/X1hWcg4VDyA
Duration: 1m02s

(a) 𝜕𝑧
𝜕𝑥

= 5; 𝜕𝑧
𝜕𝑦

= 12
(b) 𝜕𝑧

𝜕𝑥
= 24𝑥; 𝜕𝑧

𝜕𝑦
= −12𝑦3

(c) 𝜕𝑧
𝜕𝑥

= 10; 𝜕𝑧
𝜕𝑦

= 10
(d) 𝜕𝑧

𝜕𝑥
= 18𝑥𝑦; 𝜕𝑧

𝜕𝑦
= 9𝑥2

(e) 𝜕𝑧
𝜕𝑥

= −9𝑦; 𝜕𝑧
𝜕𝑦

= −9𝑥

Answer to Task 2.
𝜕𝑧

𝜕𝑥
= 11 𝜕𝑧

𝜕𝑦
= 4𝑦

Evaluating these partial derivatives at 𝑥 = 4 and 𝑦 = −3 gives
𝜕𝑧

𝜕𝑥

����
𝑥=4,𝑦=−3

= 11 𝜕𝑧

𝜕𝑦

����
𝑥=4,𝑦=−3

= 4 × (−3) = −12

Answer to Task 3. (a) 𝜕𝑧
𝜕𝑥

= 𝑒𝑥𝑒𝑦; 𝜕𝑧
𝜕𝑦

= 𝑒𝑥𝑒𝑦

(b) 𝜕𝑧
𝜕𝑥

= 𝑦𝑒𝑥𝑦; 𝜕𝑧
𝜕𝑦

= 𝑥𝑒𝑥𝑦

(c) 𝜕𝑧
𝜕𝑥

= 5𝑒5𝑥 ; 𝜕𝑧
𝜕𝑦

= 0
(d) 𝜕𝑧

𝜕𝑥
= 0; 𝜕𝑧

𝜕𝑦
= 2𝑒2𝑦

Answer to Task 4.
Video model answers for part (a)

https://youtu.be/PF0z_0Dbs4U
Duration: 1m35s
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Video model answers for part (d)

https://youtu.be/3MHJDUUlWa4
Duration: 1m31s

(a) 𝜕𝑧
𝜕𝑥

= 𝑦𝑒𝑥 + 𝑥𝑦𝑒𝑥 ; 𝜕𝑧
𝜕𝑦

= 𝑥𝑒𝑥

(b) 𝜕𝑧
𝜕𝑥

= 3𝑒𝑥𝑦3 + 3𝑥𝑒𝑥𝑦3; 𝜕𝑧
𝜕𝑦

= 9𝑥𝑦2𝑒𝑥

(c) 𝜕𝑧
𝜕𝑥

= 1 + ln(𝑥𝑦); 𝜕𝑧
𝜕𝑦

= 𝑥
𝑦(d) 𝜕𝑧

𝜕𝑥
= − 2𝑥

(𝑥2+𝑦2)2 ; 𝜕𝑧
𝜕𝑦

= − 2𝑦
(𝑥2+𝑦2)2

(e) 𝜕𝑧
𝜕𝑥

=
(𝑦2−𝑥2)
(𝑥2+𝑦2)2 ; 𝜕𝑧

𝜕𝑦
= − 2𝑥𝑦

(𝑥2+𝑦2)2

Answer to Task 5.
Video model answers for part (a)

https://youtu.be/IGGP1LW9RBI
Duration: 1m26s

Video model answers for part (c)

https://youtu.be/s9XBcQwnTH4
Duration: 3m24s

Video model answers for part (g)

https://youtu.be/OCX0hFSDyJU
Duration: 3m31s

(a) 𝜕2𝑧
𝜕𝑥2 = 0; 𝜕2𝑧

𝜕𝑦2 = 0; 𝜕2𝑧
𝜕𝑥𝜕𝑦

= 𝜕2𝑧
𝜕𝑦𝜕𝑥

= 0
(b) 𝜕2𝑧

𝜕𝑥2 = 0; 𝜕2𝑧
𝜕𝑦2 = 20𝑥; 𝜕2𝑧

𝜕𝑥𝜕𝑦
= 𝜕2𝑧

𝜕𝑦𝜕𝑥
= 20𝑦

(c) 𝜕2𝑧
𝜕𝑥2 = −24𝑥2𝑦2; 𝜕2𝑧

𝜕𝑦2 = −4𝑥4; 𝜕2𝑧
𝜕𝑥𝜕𝑦

= 𝜕2𝑧
𝜕𝑦𝜕𝑥

= −16𝑥3𝑦

(d) 𝜕2𝑧
𝜕𝑥2 = 8𝑦2𝑒𝑥𝑦; 𝜕2𝑧

𝜕𝑦2 = 8𝑥2𝑒𝑥𝑦; 𝜕2𝑧
𝜕𝑥𝜕𝑦

= 𝜕2𝑧
𝜕𝑦𝜕𝑥

= 8[𝑥𝑦𝑒𝑥𝑦 + 𝑒𝑥𝑦]
(e) 𝜕2𝑧

𝜕𝑥2 = 2
𝑥3 ; 𝜕2𝑧

𝜕𝑦2 = 0; 𝜕2𝑧
𝜕𝑥𝜕𝑦

= 𝜕2𝑧
𝜕𝑦𝜕𝑥

= 0
(f) 𝜕2𝑧

𝜕𝑥2 =
2𝑦
𝑥3 ; 𝜕2𝑧

𝜕𝑦2 = 0; 𝜕2𝑧
𝜕𝑥𝜕𝑦

= 𝜕2𝑧
𝜕𝑦𝜕𝑥

= − 1
𝑥2

(g) 𝜕2𝑧
𝜕𝑥2 = 0; 𝜕2𝑧

𝜕𝑦2 = 2𝑥
𝑦3 ; 𝜕2𝑧

𝜕𝑥𝜕𝑦
= 𝜕2𝑧

𝜕𝑦𝜕𝑥
= − 1

𝑦2
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Answer to Task 6.
Video model answers for part (b)

https://youtu.be/ZcLRPD2xAOc
Duration: 2m32s

(a) The partial derivatives are
𝜕𝑧

𝜕𝑥
= 3𝑦 + 1 𝜕𝑧

𝜕𝑦
= 3𝑥 + 1

Setting both partial derivatives to zero yields 𝑥 = −1
3 and 𝑦 = −1

3 .
The second derivatives are

𝜕2𝑧

𝜕𝑥2 = 0 𝜕2𝑧

𝜕𝑦𝜕𝑥
= 3 𝜕2𝑧

𝜕𝑦2 = 0

Thus
𝜕2𝑧

𝜕𝑥2
𝜕2𝑧

𝜕𝑦2 −
( 𝜕2𝑧

𝜕𝑥𝜕𝑦

)2
= 0 × 0 − 32 = −9 < 0,

hence there is a saddle point at 𝑥 = −1
3 and 𝑦 = −1

3 .
(b) 𝑥 = 0, 𝑦 = 3

2 ; minimum(c) 𝑥 = 0, 𝑦 = 0; saddle point(d) 𝑥 = 3, 𝑦 = 3; saddle point(e) 𝑥 = 0, 𝑦 = 0; saddle point
Answer to Task 7.

Video model answers

https://youtu.be/LZaJXDBi1PI
Duration: 2m24s

The stationary point is at 𝑥 = −5
4 , 𝑦 = −2. It is a minimum.

Answer to Task 8. (a) 𝜕𝑧
𝜕𝑥

= −2𝑦
𝑥3 − 1

𝑦2

(b) 𝜕𝑧
𝜕𝑥

= (2𝑥 − 4𝑦)𝑒𝑥2−4𝑥𝑦

(c) 𝜕𝑧
𝜕𝑥

=
8𝑥𝑦2

(𝑥2+𝑦2)2
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