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Integration in higher dimensions
Introduction to integration in higher dimensions and volume of the region

In this Unit wewill extend the idea of a definite integral, seen in Unit 3, to double integrals of functions of two variables.
The definite integral of a function of one variable represents the area under the curve. Similarly, the double integral
of a function of two variables represents the volume of the region between the surface defined by the function and
the plane which contains its domain. This can also be used to calculate probabilities when two random variables are
involved.

The figure above shows the graph of a function 𝑓 (𝑥, 𝑦) over its domain 𝑅 where 𝑅 can be any rectangular region
𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑]. This notation means that the first variable, 𝑥, of the function takes values between 𝑎 and 𝑏 while
the second variable, 𝑦, takes values between 𝑐 and 𝑑. In this case the double integral can be denoted as∫ ∫

𝑅

𝑓 (𝑥, 𝑦)d𝑥d𝑦 =

∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦)d𝑥d𝑦.

If 𝑓 (𝑥, 𝑦) is continuous on 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] then we can reverse the order of integration. This means that∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦)d𝑥d𝑦 =

∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)d𝑦d𝑥.

Notice that the inner differential matches up with the limits on the inner integral and similarly for the outer differential
and limits. In otherwords, if the inner differential is d𝑦 then the limits on the inner integralmust be 𝑦 limits of integration
and if the outer differential is d𝑦 then the limits on the outer integral must be 𝑦 limits of integration.

In the above example, the integration over 𝑥 goes from 𝑎 to 𝑏 and the integration over 𝑦 goes from 𝑐 to 𝑑.

Partial integration Let’s look at the inner integral,
∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦)d𝑦, of the last equation. We use the notation∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦)d𝑦 to mean that 𝑥 is held fixed and we integrate the function 𝑓 (𝑥, 𝑦) with respect to 𝑦 from 𝑦 = 𝑐 to 𝑦 = 𝑑.

This procedure is called partial integration with respect to 𝑦.

Now,
∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦)d𝑦 is a number that depends on the value of 𝑥, so it defines a function of 𝑥 such as 𝐴(𝑥) :

∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦)d𝑦.

If we now integrate the function 𝐴(𝑥) with respect to 𝑥 from 𝑥 = 𝑎 to 𝑥 = 𝑏, we get∫ 𝑏

𝑎

𝐴(𝑥)d𝑥 =

∫ 𝑏

𝑎

[ ∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)d𝑦
]
d𝑥.

The integral on the right side of the equation is called an iterated integral and the brackets are usually omitted. Thus∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)d𝑦d𝑥 =

∫ 𝑏

𝑎

[ ∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)d𝑦
]
d𝑥

means that we first integrate with respect to 𝑦 from 𝑐 to 𝑑 and then with respect to 𝑥 from 𝑎 to 𝑏.

In a similar fashion, the iterated integral∫ 𝑑

𝑐

∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦)d𝑥d𝑦 =

∫ 𝑑

𝑐

[ ∫ 𝑏

𝑎

𝑓 (𝑥, 𝑦)d𝑥
]
d𝑦

means that we first integrate with respect to 𝑥 from 𝑎 to 𝑏 and then with respect to 𝑦 from 𝑐 to 𝑑.
Notice that in both equations we work from inside out.
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Example 1 (Evaluating an iterated integral).

Let’s assume that we have the function 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 and we want to evaluate its volume over the region
𝑅 = [0, 3] × [1, 2].

This means that we want to evaluate the integral∫ 3

0

∫ 2

1
𝑥2𝑦d𝑦d𝑥.

As we previously mentioned, we can start by focusing on the inside integral
∫ 2
1 𝑥2𝑦d𝑦 and regard 𝑥 as a

constant. In that case, we will have ∫ 2

1
𝑥2𝑦d𝑦 = 𝑥2

∫ 2

1
𝑦d𝑦

= 𝑥2
[ 𝑦2

2

] 𝑦=2

𝑦=1

= 𝑥2
(22

2 − 12

2

)
=

3𝑥2

2

Thus, the function 𝐴(𝑥) in the preceding discussion is equal to 3𝑥2

2 .
The only thing left to do right now is to integrate this function with respect to 𝑥 from 𝑥 = 0 to 𝑥 = 3.∫ 3

0

∫ 2

1
𝑥2𝑦d𝑦d𝑥 =

∫ 3

0

[ ∫ 2

1
𝑥2𝑦d𝑦

]
d𝑥

=

∫ 3

0

3𝑥2

2 d𝑥

=
3
2

∫ 3

0
𝑥2d𝑥

=
3
2

[ 𝑥3

3

] 𝑥=3

𝑥=0

=
3
2

(33

3 − 03

3

)
=

27
2 .

That’s it. Can you reverse the order of integration and solve the integral, i.e.∫ 2

1

∫ 3

0
𝑥2𝑦d𝑥d𝑦

Tasks

Task 1.

Evaluate the double integral
∫ ∫

𝑅

(
𝑥 − 3𝑦2)d𝑥d𝑦 where 𝑅 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 2, 1 ≤ 𝑦 ≤ 2}

Task 2.

Find
∫ 5
0 𝑓 (𝑥, 𝑦)d𝑥 and

∫ 1
0 𝑓 (𝑥, 𝑦)d𝑦 for

(a) 𝑓 (𝑥, 𝑦) = 12𝑥2𝑦3
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(b) 𝑓 (𝑥, 𝑦) = 𝑦 + 𝑥𝑒𝑦

Task 3.

Calculate the iterated integrals:

(a)
∫ 4
1

∫ 2
0

(
6𝑥2𝑦 − 2𝑥

)
d𝑦d𝑥

(b)
∫ 4
1

∫ 2
1

(
𝑥
𝑦
+ 𝑦

𝑥

)
d𝑦d𝑥

(c)
∫ 1
0

∫ 1
0 𝑤

(
𝑧 + 𝑤2)4d𝑧d𝑤

Task 4.

Calculate the following double integrals:

(a)
∫ ∫

𝑅

𝑥𝑦2

𝑥2+1d𝑥d𝑦 where 𝑅 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 1,−3 ≤ 𝑦 ≤ 3}
(b)

∫ ∫
𝑅
𝑦𝑒−𝑥𝑦d𝑥d𝑦 where 𝑅 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 3}
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Self help

Double integrals (Khan Academy video)

https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/
double-integrals-topic/v/double-integral-1

Examples of iterated integrals

http://math.etsu.edu/multicalc/prealpha/Chap4/Chap4-1/printversion.pdf
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Integration over general regions

For single integrals, the regions over which we integrate is always an interval. In the previous section we looked at
double integrals which have to be integrated over rectangular regions. The problemwith this is that most of the regions
are not rectangular so we need to now look at the following double integral

∫ ∫
𝑅

𝑓 (𝑥, 𝑦)d𝑥d𝑦 =

∫ ∫
𝑅

𝑓 (𝑥, 𝑦)d𝑦d𝑥

where 𝑅 is a non-rectangular region. The figure above shows the graph of a function 𝑓 (𝑥, 𝑦) over its domain 𝑅 where
𝑅 is now the non-rectangular region in green. These integrals are unfortunately more complex to solve compared to
the integrals over rectangular regions. The reason being it could be the case that the left hand side integral, on the
previous equation, is difficult to solve while the one on the right-hand side is easy. This means that we would have to
change the order of integration and put the correct limits of integration for the new integral.

Changing the order of integration is slightly tricky because its hard towrite down a specific algorithm for the procedure.
The easiest way to accomplish the task is through drawing a picture of the region 𝑅. From the picture, we can determine
the corners and edges of the region 𝑅, which is what we need to work out (i.e. the limits of integration). Let’s look at
an example.

Example 2 (Evaluating a double integral over a non-rectangular region).

Assume that we want to calculate the integral∫ 1

0

∫ 1

𝑥

𝑒𝑦
2d𝑦d𝑥.

Evaluating the inner integral with respect to 𝑦 will be very difficult as there is no anti-derivative of 𝑒𝑦2

(i.e. a function that when we differentiate it we will get 𝑒𝑦2 ). But, if we manage to change the order of
integration, we can integrate with respect to 𝑥 first which is doable. And, it turns out that the integral
with respect to 𝑦 also becomes possible after we finish integrating with respect to 𝑥.

According to the limits of the integral, the region 𝑅 can be described as

0 ≤ 𝑥 ≤ 1
𝑥 ≤ 𝑦 ≤ 1

The figure below shows the aforementioned region.
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Since we can also describe the region 𝑅 by

0 ≤ 𝑦 ≤ 1
0 ≤ 𝑥 ≤ 𝑦

the integral with the order changed is ∫ 1

0

∫ 𝑦

0
𝑒𝑦

2d𝑥d𝑦.

Is it easier to solve this integral instead of the one we started with? Let’s check this by starting with the
inner integral first and integrate with respect to 𝑥 (ending up with a function 𝐴(𝑦)).

∫ 𝑦

0
𝑒𝑦

2d𝑥 = 𝑒𝑦
2
∫ 𝑦

0
1d𝑥

= 𝑒𝑦
2 [
𝑥
] 𝑥=𝑦
𝑥=0

= 𝑒𝑦
2 (
𝑦 − 0

)
= 𝑒𝑦

2
𝑦

Thus, the function 𝐴(𝑦) = 𝑒𝑦
2
𝑦.

The only thing left to do right now is to integrate the function with respect to 𝑦 from 𝑦 = 0 to 𝑦 = 1.

∫ 1

0

∫ 𝑦

0
𝑒𝑦

2d𝑥d𝑦 =

∫ 1

0

[ ∫ 𝑦

0
𝑒𝑦

2d𝑥
]
d𝑦

=

∫ 1

0
𝑒𝑦

2
𝑦d𝑦

This can be integrated by using the substitution 𝑢 = 𝑦2. Using this substitution we will also have d𝑢 =

2𝑦d𝑦. We also need to work out the limits of the new integral. When 𝑦 = 0 we have 𝑢 = 02 = 0 and when
𝑦 = 1 we get 𝑢 = 12 = 1. We now have
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∫ 1

0
𝑒𝑦

2
𝑦d𝑦 =

∫ 1

0
𝑒𝑢 �𝑦

2�𝑦
d𝑢

=

∫ 1

0
𝑒𝑢

1
2d𝑢

=
1
2

∫ 1

0
𝑒𝑢d𝑢

=
1
2
[
𝑒𝑢
]𝑢=1
𝑢=0

=
1
2
(
𝑒1 − 𝑒0)

=
1
2
(
𝑒 − 1

)

Example 3 (Evaluating a double integral over a non-rectangular region).

The focus of this example is on the limits of integration so there is no need to specify the function 𝑓 (𝑥, 𝑦).
The procedure does not depend on the identity of 𝑓 .

Assume that we have a function 𝑓 (𝑥, 𝑦) and we want to calculate the integral∫ 1

0

∫ 𝑒𝑦

1
𝑓 (𝑥, 𝑦)d𝑥d𝑦.

We can see that on the previous integral, the integration order is d𝑥d𝑦. As we previously mentioned, this
corresponds to first integrating with respect to 𝑥 from 𝑥 = 0 to 𝑥 = 𝑒𝑦 , and afterwards integrating with
respect to 𝑦 from 𝑦 = 0 to 𝑦 = 1. Our task is to change the order of integration to be d𝑦d𝑥.

We begin by transforming the limits of integration into the domain 𝑅. The limits of the outer d𝑦 integral
mean that 0 ≤ 𝑦 ≤ 1, and the limits on the inner d𝑥 integral mean that for each value of 𝑦 the range of 𝑥
is 1 ≤ 𝑥 ≤ 𝑒𝑦 . The region 𝑅 is shown in the figure below.

The range of 𝑦 over the region is from 0 to 1, as indicated by the gray bar to the left of the figure. The
horizontal hashing within the figure indicates the range of 𝑥 for each value of 𝑦, beginning at the left edge
𝑥 = 1 (blue line) and ending at the right curve edge 𝑥 = 𝑒𝑦 (red curve).

We have also labelled all the corners of the region. The upper-right corner is the intersection of the line
𝑦 = 1 with the curve 𝑥 = 𝑒𝑦 . Therefore, the value of 𝑥 at this corner must be 𝑒1 = 𝑒, and the point is (𝑒, 1).

To change the order of integration, we need to write an integral with order d𝑦d𝑥. This means that 𝑥 should
be the variable of the outer integral. Its limits must be constant and correspond to the total range of 𝑥
over the region 𝑅. The range of 𝑥 is 1 ≤ 𝑥 ≤ 𝑒1, as indicated by the gray bar below the region in the figure
below.
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Since 𝑦 will be the variable for the inner integration, we need to integrate with respect to 𝑦 first. The
vertical hashing indicates how, for each value of 𝑥, we will integrate from the lower boundary (red curve)
to the upper boundary (purple line). These two boundaries determine the range of 𝑦. Since we can rewrite
the equation 𝑥 = 𝑒𝑦 for the red curve as 𝑦 = log{𝑥}, the range of 𝑦 is log{𝑥} ≤ 𝑦 ≤ 1. (Note that this
indicates the natural logarithm since the base of this logarithmic function is 𝑒. This means that we can
write it as ln{𝑥} instead)

In summary, the region 𝑅 can be described not only by

0 ≤ 𝑦 ≤ 1
1 ≤ 𝑥 ≤ 𝑒𝑦

as it was for the original d𝑥d𝑦 integral, but also by

1 ≤ 𝑥 ≤ 𝑒

log{𝑥} ≤ 𝑦 ≤ 1

which is the description we need for the new d𝑦d𝑥 integral. We can now write that∫ 1

0

∫ 𝑒𝑦

1
𝑓 (𝑥, 𝑦)d𝑥d𝑦 =

∫ 𝑒

1

∫ 1

log{𝑥 }
𝑓 (𝑥, 𝑦)d𝑦d𝑥

In general, to solve these double integrals we need to remember some points:

1. After we have set up the integral, visualise the region that is encoded by the bounds in the integral. If in case,
that region does not look as specified in the problem, double check the entire setup.

2. Make sure that the bounds of the outer integral are numbers or constants.

3. Make sure that the bounds of the inner integral depend only on the integration variable of the outer integral. In
particular, the bounds must not depend on the integration variable of the inner integral.
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Tasks

Task 5.

Calculate the volume under the surface 𝑧 = 3 + 𝑥2 − 2𝑦 over the region 𝑅 defined by
0 ≤ 𝑥 ≤ 1 and −𝑥 ≤ 𝑦 ≤ 𝑥.

Task 6.

Evaluate the following integrals by first reversing the order of integration.

(a)
∫ 3
0

∫ 9
𝑥2 𝑥

3𝑒𝑦
3d𝑦d𝑥

(b)
∫ 8
0

∫ 2
3√𝑦

√
𝑥4 + 1d𝑥d𝑦

Self help

[Double integrals over a non-rectangular region (Khan Academy material)

https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/
double-integrals-a/a/double-integrals-over-non-rectangular-regions

Double integrals over a non-rectangular region (YouTube video)

https://www.youtube.com/watch?v=k7ND70gFTLU

Changing order of integration in a double integral (YouTube video)

https://www.youtube.com/watch?v=NETmfwOAKpQ
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Answers to tasks
Answer to Task 1.

Video model answers

https://youtu.be/ex7OamSsKw0

Duration: 2m05s

∫ ∫
𝑅

𝑥 − 3𝑦2d𝑥d𝑦 =

∫ 2

1

∫ 2

0
𝑥 − 3𝑦2d𝑥d𝑦

=

∫ 2

1

[
𝑥2

2 − 3𝑥𝑦2
]2

𝑥=0
d𝑦

=

∫ 2

1
2 − 6𝑦2 d𝑦

=
[
2𝑦 − 2𝑦3]2

𝑦=1

= −12

Answer to Task 2. (a) 500𝑦3 and 3𝑥2

(b) 5𝑦 + 25
2 𝑒𝑦 and 1

2 + 𝑒𝑥 − 𝑥

Answer to Task 3.

Video model answers for part (a)

https://youtu.be/IWdIRzxugAs

Duration: 2m21s

Video model answers for part (c)

https://youtu.be/Rf_5ZtJcaQI

Duration: 4m45s

(a) 222
(b) 10.5 log 2
(c) 31

30
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Answer to Task 4.

Video model answers for part (a)

https://youtu.be/5IiOmNw90XA

Duration: 2m47s

(a) 9 log 2
(b) 1

2 (𝑒
−6 + 5)

Answer to Task 5.

Video model answers

https://youtu.be/W-Iiz1eHNi4

Duration: 2m48s

The volume V is the double integral of 3 + 𝑥2 − 2𝑦

𝑉 =

∫ ∫
𝑅

(
3 + 𝑥2 − 2𝑦

)
d𝑥d𝑦

=

∫ 1

0

∫ 𝑥

−𝑥

(
3 + 𝑥2 − 2𝑦

)
d𝑦d𝑥

=

∫ 1

0

[
3𝑦 + 𝑥2𝑦 − 𝑦2] 𝑦=𝑥

𝑦=−𝑥d𝑥

=

∫ 1

0

(
6𝑥 + 2𝑥3)d𝑥

=
[6𝑥2

2 + 2𝑥4

4
] 𝑥=1
𝑥=0

=
7
2 .

Answer to Task 6. (a)

We need to compute the integral
∫ 3
0

∫ 9
𝑥2 𝑥

3𝑒𝑦
3d𝑦d𝑥.

Notice that if we try to integrate with respect to 𝑦 we can’t calculate the integral because we can’t integrate 𝑒𝑦3 . Let’s
hope that if we reverse the order, the integrals will be easier to solve.

Again, when we say that we’re going to reverse the order of integration this means that we want to integrate with
respect to 𝑥 first and then 𝑦. Note as well that we can’t just interchange the integrals, keeping the original limits, and
be done with it. This would not fix our original problem and in order to integrate with respect to 𝑥 we can’t have x’s in
the limits of the integrals. Even if we ignored that the answer would not be a constant as it should be.

So, let’s see how we reverse the order of integration. The best way to reverse the order of integration is to first sketch
the region given by the original limits of integration.
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From the integral we see that the inequalities that define this region are,

0 ≤ 𝑥 ≤ 3
𝑥2 ≤ 𝑦 ≤ 9

These inequalities tell us that we want the region with 𝑦 = 𝑥2 on the lower boundary and 𝑦 = 9 on the upper boundary
that lies between 𝑥 = 0 and 𝑥 = 3.

Since we want to integrate with respect to 𝑥 first we will need to determine limits of 𝑥 (probably in terms of 𝑦) and
then get the limits on the 𝑦’s. These are:

0 ≤ 𝑥 ≤ √
𝑦

0 ≤ 𝑦 ≤ 9

Any horizontal line drawn in this region will start at 𝑥 = 0 and end at 𝑥 =
√
𝑦 and so these are the limits on the 𝑥’s and

the range of 𝑦’s for the region is 0 to 9.

Reversing the order of integration we now have that∫ 3

0

∫ 9

𝑥2
𝑥3𝑒𝑦

3d𝑦d𝑥 =

∫ 9

0

∫ √
𝑦

0
𝑥3𝑒𝑦

3d𝑥d𝑦.

so we can now start calculating the integral on the right-hand side.∫ 9

0

[ ∫ √
𝑦

0
𝑥3𝑒𝑦

3d𝑥
]
d𝑦 =

∫ 9

0
𝑒𝑦

3
[ 𝑥4

4

] 𝑥=√𝑦

𝑥=0
d𝑦

=

∫ 9

0
𝑒𝑦

3 𝑦2

4 d𝑦

Although this looks tricky, having 𝑦2 multiplied with 𝑒𝑦
3 makes life easier. Why?

If we substitute 𝑢 = 𝑦3 we get d𝑢 = 3𝑦2d𝑦. The new lower limit will now be 𝑢 = 03 = 0 and the new upper limit will
be 𝑢 = 93 = 729. We now have ∫ 9

0

1
4 𝑒

𝑦3
𝑦2d𝑦 =

∫ 729

0

1
4 𝑒

𝑢 ��𝑦
2

3��𝑦2
d𝑢

=

∫ 729

0

1
12 𝑒

𝑢d𝑢

=
1
12

(
𝑒729 − 1

)
(b)

In this part we compute
∫ 8
0

∫ 2
3√𝑦

√
𝑥4 + 1d𝑥d𝑦.

As with the first integral we cannot calculate it by integrating with respect to 𝑥 first so we’ll hope that by reversing the
order of integration we will get something that we can integrate. Here are the limits for the variables that we get from
this integral:
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3√𝑦 ≤ 𝑥 ≤ 2
0 ≤ 𝑦 ≤ 8

and here is a sketch for the region

If we now reverse the order of integration we will get the following region:

0 ≤ 𝑥 ≤ 2
0 ≤ 𝑦 ≤ 𝑥3

The integral is then, ∫ 8

0

∫ 2

3√𝑦

√
𝑥4 + 1d𝑥d𝑦 =

∫ 2

0

∫ 𝑥3

0

√
𝑥4 + 1d𝑦d𝑥

and ∫ 2

0

∫ 𝑥3

0

√
𝑥4 + 1d𝑦d𝑥 =

∫ 2

0

[ ∫ 𝑥3

0

√
𝑥4 + 1d𝑦

]
d𝑥

=

∫ 2

0

[
𝑦
√
𝑥4 + 1

] 𝑦=𝑥3

𝑦=0 d𝑥

=

∫ 2

0
𝑥3
√
𝑥4 + 1d𝑥

A tricky integral until we notice that we can use the substitution method. If we substitute 𝑢 = 𝑥4 + 1 we will get
d𝑢 = 4𝑥3d𝑦. The new lower limit will now be 𝑢 = 04 + 1 = 1 and the new upper limit will be 𝑢 = 24 + 1 = 17. We now
have

∫ 2

0
𝑥3
√
𝑥4 + 1d𝑥 =

∫ 64

0
��𝑥

3√𝑢 1
��4𝑥3 d𝑢

=

∫ 64

0

1
4
√
𝑢d𝑢

=
1
4

[𝑢3/2

3
2

]𝑢=64

𝑢=0

=
1
6

(
173/2 − 1

)
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